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SUMMARY

The main aim of this work was to build a theo-
retical three-dimensional model of the hip. It was
developed as a generalization from the model by
Pauwels, which is two-dimensional.

The material used was general mechanics, to
which we have added an axiom which has enabled
us to calculate the distribution of surface pres-
sures. In this way, using this theory, one can ob-
tain the experimental results of photo-elasticity.

This model allows an analysis to be made of

the forces acting on the hip and their biomecha-
nical role during walking. This leads to a better
understanding of biomechanical failure as the
cause of pathological lesions and a better choice
of surgical correction.

The calculation of the distribution of surface
pressures enables us to understand the position
of acetabular subchondral thickening. Our results
contradict those of Bombelli (1).

The first experimental model of gait was constructed
by Braune and Fischer (2, 3). Their results made it
possible for Pauwels (11) to construct the first theore-
tical model of the hip.

Since then, there has been an extraordinary deve-
lopment of experimental models of the hip [Macquet
and Anh (9), Paul (10), Kummer (7)]. Being based,
frequently, on Braune and Fischer’s work, they have
recently received support from computerization [Li
(8)]. However, it must not be forgotten that these are
descriptive models since they only have access to the
resultants of forces. Their value is in making an ap-
proximation to reality.

The specific role of theoretical models is a study of
their biomechanical action in relation to each force,
which allows us to understand their physiology and
pathology. These are explanatory models. The surgical
procedure to be made is a natural one since one can
calculate in advance the biomechanical consequences
of it.
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In this duality, theoretical models and experimental
models are not antagonistic but complementary to each
other. The theoretical model has to discover results
from the experimental model and to provide new ones.
Conversely, experimental models can demonstrate the
limitations of theoretical models : this is what we have
done at the conclusion of our work.

1. SURFACE PRESSURES

The textbok by Buhot and Thuiller (4) provides an
excellent introduction to static mechanics.

1.1. Flat surfaces

1.1.1. Let us suppose that a solid has a contact
surface S with a plane P (fig. /). Let I be the centre of
S and R, the resultant of the forces applied to the
solid. Suppose that the direction of R is at right angles
to S and passes through I.
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Figure 1

The classical concept of pressure, p =R/S is a global
concept. The laws of mechanics do not allow a defini-
tion or a calculation to be made of pressures pj at
each point i of the surface, called « surface pressures ».
To this end, we have added the following axiom (which
is in the course of experimental verification) to the
laws of static mechanics :

« In the case of figure 1, if the surfaces are perfectly
flat and infinitely rigid, the surface pressures pj are
equal at all points i from S to p ».

1.1.2. Now suppose that the resultant R makes and
angle o with the perpendicular to plane P’ (fig. 2).

Figure 2

Let S* be the contact surface. R resolves into two
forces : N orthogonal to P’ and T parallel to P°. N
determines the surface pressure :

p‘ — NI[S’
T is the sliding force.

1.2.3. Let us now compare the surface pressure p
corresponding to the plane P with p’. We suggest that
the contact surface S is the projection of S’ on P and
that P’ and P make an angle «.

We can see that :

S =S8"cos a;

and N = R.cos «.

Therefore : R
p’=N/S’=Rcosa/S/cosa :S_ cos? o = p cos? «.

1.2 Hemispherical contact surface

1.2.1. Let us suppose that the contact surface S’is a
hemisphere (fig. 3).
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Figure 3

Let S be the surface of section of the ball B with the
horizontal plane passing through its centre O.

If the support surface was S, the surface pressure
p = F/S would be the same at all contact points. On
the other hand, if the contact surface is S’ the surface
pressures are no longer constant. Let us calculate this
latter at point i.

At this point there exists an infinitesimal for rj whose
component perpendicular to S’ in nj and its tangential
component is tj. Let s’j be an infinitesmal surface S’
centred on i. We can assume that s’ is flat, contained
in the plane P’} tangential to S’ at i. This latter makes
an angle « with the horizontal plane Pj passing
through i and we note sj which is the projection of s%
on Pj. We find ourselves in the situation of 1.1.3.
(fig. 2). Calculation shows that :

(1) p’= p cos? a.

We can see that the surface pressures are at their
greatest at the superior pole of S’ and thus equal to p,
since cos O° = 1. It decreases in proportion to the
distance from the pole (fig. 4). It is nil at the equator,
since cos 90° = 0.

Figure 4
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In conclusion, the whole of the surface pressures
represented in figure 4 (section passing through the
straight line GO), have the appearance of a crescent
whose widest part is one the line GO and whose tips
are at the level of the equator of the ball B. We stress
the fact that the distribution of surface pressures only
depends on R and not on one of its components.

1.2.2 Notes

a - The sliding force tj (fig. 3) has a moment relative
to the point 0. If i’ is the symmetrical point of i relative
to the GO axis, it can be seen that the sliding force t3
at this point has a moment relative to 0, opposed to
tj. Thus there is an equilibrium.

b - Supposing that the contact surface S’ is not a
complete hemisphere but only a part of it, as is the
case for the hip. There will be equilibrium if the surface
S’ has GO as its axis of symmetry. Thus the sliding
forces balance in paris as we have seen above. The
formulae (1) remain correct at all points of contact i,
provided that we take for S the projection of S’ on the
equatorial plane of the ball B.

2. TWO-DIMENSIONAL MODEL OF THE HIP JOINT

We will describe here the Pauwels model and give
the main results which can be drawn from it. This
model describes the forces exerted in the frontal plane.
It allows us to understand the model in three dimen-
sions of which it is an extension. We can then explain
our differences from Bombelli’s (1) theory.

2.1. Pauwels’ model (11)

Pauwels had the great merit of having conceived
this model which has been the origin of extraordinary
progress in the surgery of the hip in recent years.

2.1.1. Bipedal weight-bearing

In the standing position, with symmetrical weight-
bearing on the two lower limbs, the centre of gravity
S of the trunk, upper limbs and head is found, as
indicated in Figure 5, in the mid-position of 00°. The
force of gravity exerted on S,consists of a compression
at each femoral head, due to a force R = K/2. R has
a normal value equal to about one third of the body
weight.

2.1.2. Monopedal weight-bearing

In monopedal weight-bearing, for example on the
right leg, the centre of gravity Ss of the trunk, upper

Figure 5

limbs, head and left lower limb is projected on 00’ at
C (figure 6).

0°C is obviously smaller than OC. The force of gra-
vity K which is applied at S5 has a moment in relation
to the centre of rotation 0, equal to ||K|| OC. To
balance this moment, two groups of abductor muscles
play a part :

Figure 6

The pelvi-trochanteric group (gluteus medius, gluteus
minimus and piriformis) and the pelvi-crural group
(tensor fasciae latae, rectus femoris and sartorius). Ho-
wever, the principal abductor muscle is the gluteus
medius.

The resultants developed by these two groups is
represented by the vector M in figure 6. It makes an
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angle of 21° with the vertical. The moment of this
force is ||[M||. OB. We know that there is equilibrium
when the two moments are equal.

From this :

IM||OB = ||K||. OC
- 0C
and | M|| ~ OB K]

The compression exerted on the femoral head is
due to the resultant R of the two forces K and M. It
makes an angle of 16° with the vertical. R passes
through 0 and determines the distribution of surface
pressures between the acetabulum and the head. It
has been seen in 1.2.1. (fig. 4) that this distrubution is
centred on the point D. The tangential plane to the
acetabulum at point D is perpendicular to R. Its angle
with the horizontal is thus 160,

It shows that TR has a normal value equal to about
four times the body weight.

2.2 Bombelli’s theory (1)

Bombelli starts from Pauwels model. He put forward
the following hypothesis :

(H) : « the acetabular subchondral thickening is due
to surface pressures exerted on the acetabulum by
monopedal weight-bearing (at phase 16 of gait) ».

It should be remembered that the acetabular thicke-
ning is a subchondral sclerosis easily visible in radio-
graphs of the pelvis. In antero-posterior pelvic views,
it appears to be approximately horizontal. But we
have seen in 1.2.1 (fig. 4) that the distribution of surface
pressures in monopedal weight-bearing admits R as
its axis of symmetry. ‘

Figure 7

Consequently, if the hypothesis (H) is correct, the
greatest thickness of the sclerosis should have an ap-
proximately oblique appearance, making an angle of
16° with the horizontal. This is rarely the case.

To explain this contradiction, Bombelli resolves R
into a vertical component PR and a horizontal com-
ponent QR (fig. 7).

He then asserts that the surface pressures on the
acetabulum in monopedal weight-bearing are determi-
ned only by PR. This hypothesis is, at first sight, in
harmony with antero-posterior radiographs of the pel-
vis. On the other hand, it has the irremediable defect
of being in contradiction with static mechanics (¢f. 1.2
and fig. 4). This same error is repeated throughout the
theoretical part of Bombelli (1).

The significance of acetabular subchondral sclerosis
and its position will be considered in 3.3.

3. THREE-DIMENSIONAL MODEL OF THE HIP JOINT

We use here the work of Braune and Fischer (2, 3)
as did Pauwels for the two-dimensional model. The
figures which we give are those of the authors.

3.1. Bipedal weight-bearing

3.1.1. The biomechanical model

It is proposed that the whole upper half of the body
— head, upper limbs and trunk — is a solid S with a
centre of gravity Sy. S relies, through the intermediary
of the acetabulae, on the right and left femoral heads
with centres O and O’ respectively. The femoral heads
are considered as fixed (fig. 8).
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Figure 8

The forces acting on the mechanical system are :

1. The weight K of S which is applied at S;;

2. The resultant E of the extensor muscles (gluteus
maximus and hamstrings) whose direction is considered
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as vertical behind OO’ and contained in the sagittal
plane Q (perpendicular to OO’ and passing through
its centre I). In addition it is assumed that the distance
dE of the direction of E to OO’ is about 5 cm ;

3. The resultant F of the flexor muscles (iliopsoas
and rectus femoris) whose direction is considered as
vertical and in front of OO’ is contained in the sagittal
plane. In addition it is assumed that the distance df
from F to OO’ is about 5 cm.

The only possible movement of S is oscillation round
the axis A,. It is presumed that, in the course of this
oscillation dg and dF do not vary in the first
approximation.

It is noted that s,, the projection of S, on the hori-
zontal plane P, passing through OO’ and x, the distance
from s; to OO’ (x = Isy). X is positive when s, is in
front of I and negative when it is behind it.

3.1.2. Physiology of the model

K has a fixed intensity and a fixed sense. Its appli-
cation point S, oscillates round the axis A, and its
direction, which is always vertical, moves in plane Q.
When x is positive, then F = 0 and the norm of E
verifies the equation

IlEl|. dE = [IK]|. x.

It is the equality of the moments E and K in relation
to A,. From this

_ K]

It can be seen that E = 0 when S, is in the frontal
plane containing A, (x = o). This is the case in Pau-
wels’ model. The greater ||E|| is, the greater x is. In
that case the resultant of E and K is E + K which has
a vertical direction.

To study the case when x is negative, it suffices ot
reverse the roles of E and F.

3.1.3. Distribution of surface pressures

For reasons of symmetry, the force which acts at
each femoral head is g — K T E if x is positive; if it
2

is negative, it will be g = K+ F and if it is nil
2

2

R thus varies in intensity, the more so as S is inclined
in front or behind. The maximal value of R is obtained
when x is maximal, that is to say x = IS, (S, is then
in plane P) which is approximately equal to 30 cm.
Since dg measures about 5 cm, it can be seen that

llEmax.|l = 6. [[K||

and [|Rmax. [l = 3.5. [IK||

The values are close to those obtained in monopedal
weight-bearing. The direction of R remains fixed (ver-

tical) passing throught the centre of the femoral heads.
It is an axis of symmetry for surface pressures (1.4).

3.2 Monopedal weight-bearing

This model aims to describe the forces acting on the
femoral head in the course of walking, where the sub-
ject is bearing weight on the right lower limb : phases
12 to 22 (fig. 9).

12 16 22
Figure 9

3.2.1. The biomechanical model

The whole upper part of the body S formed by the
head, upper limbs, trunk and left lower limb has S;
for its centre of gravity. This is not a solid since the
left lower limb oscillates round the axis OO’ In the
course of the oscillation, S5 moves in the sagittal plane
Q, intersecting OO’ at C. Obviously OC > OC, S;
being displaced towards the left lower limb (fig. 10).

Figure 10

The forces acting on S are :

1. The body weight K applied at S5 in a vertical
direction. K moves like S5 in the plane Q which is
paramedian sagittal.
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2. An abduction force M, situated in the frontal
plane T which passes through O and O’. It makes S
turn through the antero-posterior axis A, passing
through O. The direction of M makes an angle of 21°
with the vertical, according to Pauwels.

3. An extension force E, situated in the sagittal
plane containing A, and A;. Its direction, contained
in the plane (A, A;) is parallel to the right lower
limb. This force makes S turn round A,.

4. The flexion force F has the same characteristics
as E but makes S turn in the opposite direction to E.

3.2.2. The physiology of the model

In order to make the exposition clearer, the calcula-
tions are given in the appendix. We will indicate the
main results here.

In this model, only the static problem is of interest.
The kinetic and dynamic aspects are ignored since the
accelerations which affects it are very small in compa-
rison with gravity.

As has already been mentioned, S moves round
point O, the centre of the right femoral head. The
force of gravity K applies to the centre of gravity Ss
of S. The other forces, M of abduction, E of extension,
and F of flexion only serve to balance K. Thus the
moment of K in relation to O noted as M, (K) is
equal to the sum of the moments relative to A}, noted
as MA, (K) and in relation to A,, noted as MA, (K).

M, (K) makes S turn round A,. It is balanced by
the moment of M in relation to A;. This problem is
resolved by the Pauwels model, since MA, (K) = ||K||.
OC remains constant in the course of walking.

MA,; (K) makes S turn round A;. It is balanced by
the moment F relative to A,, when ss is behind C
(phases 12 to 15 and thus E = O). It is balanced by
that of moment E when s; is in front of C (phases 17
to 22 and thus F = 0). Its value is ||K]||. x; it thus
varies in the course of walking. It is nil in phase 16,
since x = 0 and ss is in C. It is the position of Pauwel’s
model, where MA,; (K) does not enter into it. The
moment is maximal at the extreme
phases 12 and 22 where x = 5 cm.

The resultant R of these four
forces K, M, E and F varies in di-
rection and intensity in the course
of walking (fig. 11). It direction
passes throught O and scans a sur-
face which approximately resembles
a portion of a cone. The resultant
R,¢ at phase 16 makes an angle of
16° with A, (see Pauwel’s model).
This angle subsequently increases
and reaches a value of 18° at the
extreme phases 12 and 22.

The intensity is minimal at phase 16 and is equal to

Figure 11

four times that of K. It is maximal at phases 12 and
22, equal to five times that of K.

At all times, the surface pressures admit R as axis
of symmetry. In section they are crescent-shaped (fig.
4). In the course of walking they will concern the
majority of the joint surface.

3.2.3. Comparison of the model with reality

No muscle is exclusively an abductor, flexor or ex-
tensor. This means that the resultant R is, in fact,
greater than that given by the model. Consider the
case of the gluteus medius. It is the principal abductor
muscle. It is inserted into the greater trochanter. When
anteversion of the neck is not great, the insertion point
of the gluteus medius on the greater trochanter is on
the axis A,. In the course of walking, this point is
fixed since the right lower limb has A, for an axis of
rotation. In these conditions, the gluteus medius is
close to the frontal plane containing A,, and it is thus
almost exclusively an abductor.

In cases where anteversion is greater, the gluteus
medius is an abductor and extensor [Frain (5)]. To
balance its function as an extensor, the flexors must
intervene, which thus increases the resultant.

3.2.4. Therapeutic principles

In cases with a pathological hip, it is sometomes
sufficient to diminish the norm of R to stabilize lesions
and to find a new balance. This norm diminishes when:

1. O is brought closer to the centre I of OO’ pelvic
osteotomies.

2. Pathological anteversion is diminished.

3. The direction of M is moved away from the centre
of the femoral head O : femoral osteotomies.

3.3. The acetabular sclerotic line

We have already stated that the acetabular sclerotic
line is the subchondral acetabular condensation visible
on radiographs. We also restate the hypothesis put
forward by Bombelli.

(H) : « The acetabular sclerotic line is due to surface
pressures which act on the acetabulum at phase 16 of
walking », since the pressures are supposed to be maxi-
mal at this time.

This hypothesis seems to us to be incomplete. We
have shown in 3.2 that the maximum pressures are
those in phases 12 and 22 of walking. In addition, we
must not take into account only maximal forces. Thus
we prefer to restate the hypothesis as follows :

(H’) : « The acetabular sclerotic line depends on all
the surface pressures acting on the acetabulum, each
one of which takes part in increasing function of its
intensity and the length of time of its application.



A THREE-DIMENSIONAL MODEL OF THE HIP JOINT 251

(H’) obliges us to take into account :

a) The resultants of forces in monopedal weight-
bearing. We know that they are the most significant
(in intensity) and are oblique.

b) The resultants of forces in bipedal weight-bearing :
these are vertical. Their intensity is possibly eight to
ten times less than the preceding ones but their time
of application is certainly very much greater.

¢) The forces developed by muscle bone : the surface
forces for which they are responsible are spread over
the whole of the articular surface. Their intensity is
low but their time of application is much more impor-
tant than all other forces.

Moreover, knowing that the distribution of surface
pressures extends widely beyond the direction of the
different resultant forces, we can expect the sclerosis
to affect the whole of the subchondral bone. This is
clearly demonstrated in radiographs :

¢ In antero-posterior radiographs, the condensation
is often horizontal. This is due to the fact that the
sclerosis is strictly subchondral. It thus stops where
the bottom of the acetabulum begins and this often
extends to a high level. fig. 12 is an apposite example.
It is an antero-posterior radiograph of the acetabulum
whose base is very low. This is a very rare case. The
sclerosis is not horizontal but occupies the whole sub-
chondral region.

Figure 12

* In oblique radiographs, the subchondral tissue
wich can be seen is much more extensive and part of
its even vertical (fig. 13). The sclerosis affects the whole
of this surface.

CONCLUSIONS

Whilst this model gives a satisfactory description of
the forces acting on the hip, it gives, on the other
hand, a less satisfactory description of the surface pres-

Figure 13

sures. Our model presumes that the acetabulum is an
infinitely rigid solid and has a perfectly spherical shape.

To have a better approximation to reality, account
should be taken of the elastity of the pelvis and the
variable shape of the acetabular cavity [Li (8), Frain
(6), Teinturier ez al (12)].

Appendix

Mg(K) = MA, (K) + MA, (K) (fig. 10), since
Mo(K) = 0ss AK = (OC + Css) AK = OC AK + Cs;

o MA, (K) + MA; (K).
MA, (K) = ||K||. OC is constant during walking and
equal to the moment of M.

If dE is the distance of O in the direction of E, in
the course of phases 16 to 22, we have
MA, (K) = ||E|l. dg = [IK]l. x;

thus [|E|| = Eﬂ X
dg

If we presume that d is approximately equal to 5
c¢m, since X varies from 0 to 5 c¢m, on sees that ||E||
varies from 0 (phase 16) to || K|| (phase 22).

The direction E makes an angle with the vertical
which varies from 0 (phase 16) and about 20° (phase 22).

For phases 12 to 16, the study of F is made in the
same way.

Thus for phase 16 (Pauwels model where E =F =
0), R16 = M + K, this resultant is in the frontal plane
T, its direction makes an angle of 16° with the vertical
Aj, and its intensity ||Ri4||= 4. ||K]||.

For phases 16 to 22 (F=0), R=M + K + E =
R+ E.

In particular R;; is behind the frontal plane and
makes an angle of 18° with Ay; the plane (43, Ri)
makes an angle of 12° with the plane T. Finally

IRy|| = 5. |IK]|.

The study is identical for phases 12 to 16 (E = 0).

19
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