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On lattice spin systems

par

J. MANUCEAU and J. C. TROTIN (*)
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ABSTRACT. — We start by describing the C*-algebra of the model, whose
extremal symmetric states are built and classified into factor types. In
order to introduce a ferromagnetic behaviour we specify interactions to be
of a « generalized Ising » or a « generalized Heisenberg » type, involving
many-body interactions with infinite range. From a boundedness hypo-
thesis, we show that the formal hamiltonians induce an automorphism
group on the C®-algebra, We exhibit the extremal symmetric states,
invariant under this group, and finally we search for the states which induce
positive hamiltonians.

1. INTRODUCTION

Scrutinizing lattice spin systems is appealing in several respects; firstly
they appear to be among the simplest models of infinite systems to be built ;
secondly much progress has recently been made in the mathematical ques-
tions mvolved in this problem. Finally, there is some hope that these
discrete models can help in more elaborated ones.

We focus our attention on the C*-algebra of the model. In the second
section, we build and describe its main properties (locality, asymp-
totic abelianness with respect to the permutation group, simplicity).

In the third section, we exhibit the extremal symmetric states (I e. extre-
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mal among the symmetric ones) of our algebra with respect to translations
and we calculate their entropy. The so-called « symmetric states » are
the states invariant under the group of permutations of a finite number
of points in the lattice, These states play an important rile because of
their homogencous character; their physical meaning is that all the ions
in the lattice are in the same physical state,

The symmetric states are invariant under the translation group of the
lattice; all extremal symmetric states are ergodic with respect to transla-
tions (see [/2]).

The fourth section is devoted to « dynamics »; we define a formal hamil-
tonian H in the C*-algebra of the system; we search for the conditions
under which this hamiltonian induces a one-parameter group of auto-
morphisms of the algebra. The invarant states under this group are the
so-called « stationary states » e, which in turn induce an infinitesimal
generator H,. The study of H,, specially its boundedness from below,
helps to select states of physical interest.

The hamiltonians usually found in the litterature turn out to be the H,
induced by the Fock represcntation (i e. corresponding to the state with
all the spins pointing in the same direction).

In the fifth and sixth sections, after describing the generalized Ising and
generalized Heisenberg hamiltonians, we show that the conditions under
which these hamiltonians induce a group of automorphisms of the algebra
are weaker than those proposed by D. Ruelle [12] (with his notations, that
s DNOO || < + , instead of Z’W 1600 | < + );

oe X oeX

then we look at the extremal symmetric states which induce positive hamil-
tonians.

2. THE FERROMAGNET C*-ALGEBRA

The ferromagnet C*-algebra has already been described in [Z], [10), [11].
For completeness, we briefly build this algebra and we give its main pro-
perties, following a slighily more general approach.

2.1. Building the local *-algebra.

Let E be any set, and let K be a real Hilbert space, whose scalar product
will be denoted by 5. A(K x E) will be the free complex algebra built
upon the alphabet K x E. Let us recall that this algebra is generated



OM LATTICE SPIN SYSTEMS 361

through finite formal sums (with complex coeflicients) of finite formal pro-
ducts of elements belonging to K x E. Any element in A(K x E) is
written in the following form:

P

Zﬂﬁﬁul. X1 oo (W0 x5)

=1

with n and p two positive integers, %; a complex number, x, = E, ¥, = K,
forj=1,2,...,pandk=1,2, ...,n Let XK x E, 5) be the two-sided
ideal generated by the following elements:
{ﬁ'.f" + 5% I} - I:"'{.lpl x] - ﬂ(‘?: I}
"let x]{ﬂl }] + {2&:;- - [H’P! J’xlﬁ’- x} - Hgﬁ(*! ‘J’}I

with , § real numbers, ¢ and ¥ €K, x and y € E, 4,, the usual Kronecker
symbol and I the identity of the free algebra. We shall denote by F(K % E, 5)
the quotient-algebra A(K x E)/J(K x E, s). The canonical image of any
(¢, x) = A(K x E) will be denoted B_(y) and the identity is still denoted

by I. There is only one involution in F(K x E, s) such that all B.(¢)
are hermitian. So F(K x E, 5) is turned into a *-algsbra.

2.2, Properties,
22.1. If x # y, [By), B@)l- = 0 for any ¢ and p = K. Moreover
[B.(W), Bul@)ls = 2s(y, @)L, for any x<E, ¥ and ¢ e K.
This property is straightforward, from the definiton of J(K x E, s).

222 Forany M<E, F(Kx M, 5)= (K x E, ).
This property is derived from the following relations :
AK xM,s) = A(K x E,5), 3K x E,s) nAK x M) = JK x M, s5).

2.2.3. Foranyset{xy ..., x}, F(K x {xy, ..., x, }, 5) is isomorphic
with @ &, with &, = &(K, 5) (the Clifford algebra on (K, 5) [2]).
=]
This is a corollary of 2.2.1,
#(K, 5) being postliminar, a unique C*-norm (i. e. | a*a | =| a |* for any
a = A(K, 5)) can be found on it. Consequently F(K x {x,. ..., x, ), 5
can also be equipped with a unique C*-norm. Now let F(E) be the set
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of finite subsets of E. It is easily seen that F(K x E, 5) is the inductive
limit of the directed upward set { F{K = M, 5) }yerr,. This follows
from 2.2.2, together with the properties of F(E):

w) for any N and M e F(E), M u N e F(E),

f) E= U M.
MeFiE)
Consequently, a unique C*-norm also can be found on F(K % E, 5),

The algebra obtained from F(K = E, 5) through completion with respect
to this C*-norm (we write it F(K x E. s))isa C*-algebra. From the above,
we easily derive the following property:

2.24, F(K x E, 5) is the inductive limit of C*-algebras F{K = M, 5)
M e F(E). Moreaver if the dimension of K is even or infinite then (K x E, 5)
is simple.

The second part of this proposition is easily deduced from the first part,
adding that, for any x = E, &K x { x |, 5) is simple if the dimension of K
is even or infinite,

From 2.2.1, it follows:

225 Forany Nand M = E, such that M A N = ¢,

[F(K x M, 5). FlK x N, 5)]_ = 0.

2.3. Spatial automorphisms.

Let §(E) be the permutation group of E (i. e. the group of one to one
mappings of E onto itself). The following proposition is straightforward:

2.3.1. For any p e ¥(E), the mapping B(ir) — B,(W) can be extended
to a wnigue aulomorphism {, of F(K x E, 2). The mapping ps T(E) = { =
is a one-to-one homomorphism,

The group { {,| pe F(E) } is called the group of spatial automorphisms.

2.3.2. IfE is an infinite set, F(K x E, 5) is asymprotically abelian with
respect to the spatial automorphisms group (i. e. for any a and be F(K = E, 3),
'lﬂf} {[a, ((B)]-} = O)

peT{E

This is a direct consequence of 2.2.5.
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3, EXTREMAL SYMMETRIC STATES

From now on, attention will be specifically paid to a lattice whose points
are occupied by ions, having spin 1/2, and whose motion is neglected.
Consequently E = Z' (v is the dimension of the lattice) and K is two-
dimensional. The translation-group of the lattice is included in J(E).
We restrict the theoretical study of siates on F(K x Z, 5) to invariant
ones under the spatial group; nevertheless, to get mathematical properties
oa these latter states, we shall restrict our interest to the invariant states
under the group J4(E) of permutations of finite subsets of E.

An invariant state under the group F,(E) will be called a « symmetric
state » as in [3].

3.1, States on A(K, s),

Let (e,, £;) be a basis for K. Then A(K, 5) is generated by { B(e,).
B{e,) } which satisfy:
[Bie)), Ble;], = 28,1.

It follows that any linear form on A(K, 5) is characterized by its values on 1,
Bie,), Bles) and B{e,)B(es). As far as states o are concerned, we know
that ell) = 1, e{Ble,)) = z,, (Ble;)) = x; are real numbers, while
e Ble,)Ble;)) = gy, a pure imaginary nomber. From the inecquality
|oofx) | = [ x|, it follows: |y, | <1, fori=1, 2, 3.

3

311 wisastate if and only if >y} < 1.
i=1
Any positive element in A(K, s5) can be written as y* with y self-adjoint,
so that:
y = %l + x,Ble,) + 2;B(e;) + in;B(e,)Ble;)

with 2; real numbers,
Therefore:

¥ o= (2] + xi + xf + «)l+ 222,B(e,) + 2292,B(e;) ~ 2ixgxsBle, )Ble,).
An casy computation shows that exy®) = 0 if and only if

Zaf - (Z:tix,.)z =0

i=
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and the conclusion follows from the inequality:

(S <(S)(>2).

i=1 =1 =]
Let = be the irreducible representation of +& in C? defined by:
D1 0 - (i O
Ble))=a,= (] o). ®Bley=os=(; =), xBleoBea)=ios=( )
We shall denote for brevity, (;) by 4 and (‘1’) by ).

3.1.2. Every state on A(K, 5) is associated either with the representation
n@nlat + by @ct being the cyclic vector, where a is a complex number,
b and ¢ positive non zero numbers satisfying | a |* + B* + ¢* = 1), or with
the representation n (a4t + b being the cyelic vector, where a is a complex
mumber, b a positive number satisfying | a|* + b* = 1).

Such a state will be denoted by p, ., . where a is a complex number, band ¢
positive numbers, satisfying the conditions: |a|> + b2 +c* =1, b#0
ifest0,

Let 21 = p(Bley)) = 2Rab,
¥: = p(B(ey)) = 23ab  and  iyxy = p(Ble,)Ble;) = i( | a|* = b* + &),

The result follows from 3.1.1, adding |a|® + &* + ¢* = 1 if and only
3

if >y’ < 1; this is easily proved.
=1

3.1.3. Among the states pyp... the pure states are the stats pgy.o.

These pure states are associated with the irreducible representation =
with a ¢+ + b} as cyclic vector. Reciprocally, if either a % 0 or b # 0
together with ¢ # 0, p,,.. is associated with n & =, that is a reducible
representation. Finally let us notice that the states pg,,.. cannot be dis-
tinguished from the pure states p..q.0.

32. Extremal symmetric states on 7 (K x E, s).

We now exhibit the states @ on F(K x E, 5), which are invariant under
J4(E) and moreover, extremal among states invariant under T4(E). From
now on, we suppose consequently that the conditions on a, & and ¢, stated
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in 3.1.2 are always satisfied. Our task is made much easier by Stermer’s
analysis which shows that extremal symetric states are product states,
S0 We can state:

3.2.1. THEOREM. — Any extremal symmetric state on F(K x E, 3)
is a product state w,,,, = ® @, with, for any i€E, o = p3... Let us

icE
denote by X, the Hilbert space generated by ® W, where
=E
W,=at +b, @ct

Sor any i, but a finite number; the state @, s associated with the repre-
sentation T,,. = @ n, where n, =n & = (see 3.1.2) holding in K,s.c.
=E
and with the cyclic vector S,y = @V, where Vi=at + b} @ct
i€E

for any i€ E. Moreover, the entropy of w,,,. is equal to ;
= (A log Ay + 4y log 4;)
where

h=3(+VI-%c) o i = 3(1 = V125,

Thiz can be deduced from the fact that we necessarily deal with a product
state of a given state @, on &K, 5) ([7), theorem 2.7). The existence
of ¥,;.. 15 known from [§]. The second part of the theorem is straight-
forward.

Let us remark that the entropy goes from 0 (for pure states) to log 2
(for the central state).

3.2.2. Any extremal symmetric state on F\K x Z', 5) is primary.

It is quite straightforward that the condition expressed in ([/], theorem 2.5)
is satisfied by any @ = ® w, since on one hand F(K x E, 5)is asymptotically
mE
abelian (2.3.2) and on the other, @ is a product state,

In order to perform the classification of states into different factor-types,
we need these two lemmas.

323, Following the notations Introduced in 3.2.1, the vector @ V, is
e

separating for the representation 7., when b and e # 0.

Since V| is separating for the algebra +,, it is cyclic for its commutant,
thus the tensor product @ V;is eyclic for the tensor product of these commu-
SE
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lants, ﬁ #;, and for the commutant (® ) also, since ® 4, < (@ 4,)';
®E =E i=E
consequently Q,, _ is separating for the product @ #,.
+ Ed - el EE
Since @, is invariant under the automorphism group induced by 4,
there exists a unique unitary representation U of 7 into ¥, , ., such that:

Tap, L) =Ulp)m, 5 (1)U(p)* where U(FJN? W= E W[5, 2. 12, 11).

3.24. The cyclic vector Q.. is the unigue vector \ in X,,.. up to
a scalar, which satisfies :

U(pir = A(pl,  Ap) a complex number (1)
Take ¥ € K. (| ¢ | = 1), satisfying (1); since U is unitary, | i(p) | = 1,

and obviously
[ Uw)| =1; (2)

from cyclicity of £,,.., a sequence x, can be found in F(K x E, 5) such
that y, = m(x,)0,; . converges towards . By (2) and this last remark,
it is easily seen that:

| (W, | Ulpiey) | = | e(xy{,(x,)) | converges towards 1 uniformly with
respect to p;: it follows from the strongly clustering property of @ (3.2.1
and [3]) that

inf {0(x0,() = ox})alx) } = 0.

Then, a(x))m(x,) being equal to | w(x,) |, we have:
lim | ofx) | =lim [(Q,.|¢) | = | Q. ¥) | =1

Since Schwartz inequality here turns to be an equality, ¥ is equal to £, .,
up to a scalar,

3.2.5. TueomeM. — Fallowing the notations of 3.2.1, the classification
of the extremal symmetric states is obtained :

x) when € = 0, w is a pure state (with type 1),

B) when a = 0 and b = ¢, @ is the central state (with type II, ),

w) in all the other cases, © has the type I,

When ¢ =0, @,;,. is an infinite product of pure states (3.1.3), thus
a pure state also [6). When a = 0 and b = ¢, see for instance ([3], corol-
lary 2.4. (3)). From both the lemmas 3.1.3 and 3.1.4, the cyclic vector is
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separating for the representation =, . and it is the unique vector invariant,
up to a scalar, under the unitary operators U(p), p e T, Since the
state @,;,. is primary (3.2.2), the conditions indicated by Stermer ([7],
th. 2.4.) are precisely satisfied, which imply that w,,,,. has the type III.

Since the extremal symmetric states are tensorial infinite products of
copies of a state (3.2.1), these states are invariant through the group of
automorphisms induced by ¥, consequently they are invariant through
the translation group of Z".

Morsover these states are strongly chustering for this group and conse-
quently, extremal (ergodic states).

4. INTRODUCTION TO DYNAMICS

4.1. Group of automorphisms
induced by a formal hamiltonian.

Let H, be a sequence of hermitian elements belonging to the local algebra
F(K x Z°,5), which does not necessarily convergein 7 (R x Z,5). Never-
theless, the sequence (*) (ad”H, (7)),  is supposed to convergein F (K x Z, 5)
for any 7 in F(K x Z', 5) and any integer p. H will be the « formal »
element lim H, defined by : ad"H(y) = lim ad™H,(7) for all y'sin F(K x Z7,s).

o - i -

Consequently adH is generally an unbounded derivation on F(K x Z7, 5),
and so cannot be extended to the whole algebra F(K x Z, 5).

4.1.1. If, for all y'se F(K = Z°,5), there exists a neighbourhood of O in R such
that the limit: lim e “"N(y) =t (y) is uniform in t, then 1, is a strongly conti-

R=ri

nuous group of automorphisms of F(K = Z7, 5) induced by the derivation adH.

Proaf : See [97].
Remark. — Whenever H is an hermitian ¢lement in F(R x Z', 5), it is
easily verified that exp { irH } belongs to F(K xZ', 5), for any tin R, and

tdy) =exp {itadH }(y) = exp {itH } yexp{ — itH ).
If H is a formal hamiltonian, exp { irH } does not exist, despite the possible

existence of 1,.

(*) ad”H, is defined through the Induction formula: ad®H, =adH, o ad"'H_, and
adH (v =H_ v — vH .
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4.2, Stationary states,

In this section we assume that the conditions of 4.1.1 are verified. Thus,
the abelian group of « time » automorphisms is obtained. The states
invariant under this group will be called stationary states.

4.2.1. A state w is stationary, if and only if weadH = 0, on the local
algebra F(K x Z', 5).

Proof : From the continuity character of w, one obtains for all
yeF(K = Z° 5), in a neighbourhood of 0,

alt,(7)) — ofy) = Z%fm{mdrmﬂ).

p=1

The expansion on the left-hand side is an analytic function of ¢, so that,
this function will be vanishing everywhere, if and only if weadH = 0.

For any state w on F{K x Z', 5), we denote by X, =, and 02, respectively
the Hilbert space, the representation and the cyclic vector, associated with w
through the Gelfand-Segal theorem ([5]. 2.44.)

422, If @ is a stationary state on F(K x Z', 5), then a unigue self-
adjoint operator H,, (which is generally unbounded) is defined through:

H (m (1)) = = (adH(y))Q,
Sorall yse F(K x Z*,5). This operator H,, verifies, forall ye F(K x 7, 5):
mal7(1)) = exp {itH, } m.(y) exp { - #tH,, }.

Proaf: By ([5], 2.12.11), there exists a continuous unitary representation U
of R such that:
U(rm (1)) = m(r (7)),

and

7 (7)) = Ul (y)U(1)*.

Stone’s theorem implies the existence of a self-adjoint operator H, on X,
verifying:
U(r) = exp { itH,, }

o= i O = I‘
=0
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The elements n (7)., with y= F(K x Z°, 5), are in the domain of H,
and one has:

Ho(x0)0) = — ilim D=0 _ ¢ @angya,.
=0

The hamiltonians usually written in the litterature are, in the frame-
work of this paper, hamiltonians induced by a Fock state. These latter
are a convenient tool as guide for the choice of the hamiltonians

in the abstract algebra.

5. GENERALIZED ISING MODEL

5.1. Formal hamiltonian.

Let:
Be,) = u/, Bfe;) = uf and — iBe;)Be;) = u.
Introducing:
+_u§+1’uf __uj_fuf
u; 3 » H; = 3

we get the following relations:
[".'+- ”:']+ =1, [ﬁ‘-r “:-]= =u;, [”'?f 1‘=+}+ . [“r!- ".'-]-r =0 (3

and [uf, f]. = Oforanyi,j# i andany g, p =3, +, —,
The following relations will be of constant use:

[wf, )- = 2u*d = — 20}, [, uil-=2ud =2, (6)

The « generalized Ising model » will be defined to as the model with
a formal hamiltonian written as:

Hl - Z E'I-a-‘:r"z.ul?t gy ”?;, {T}
r'l;

the real coefficients g,. , can be taken as completely symme-
trical functions of their indices. The translation-invariance of the
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interaction turns H; to be a formal hamiltonian since the sums

zlﬂn...lnl
wElr

cannot converge. This hamiltonian is the limit, in the sence precised

above (4.1), of local hamiltonians HY, obtained by taking the interacting

points in an open ball whose center is at the origin, whose radius is n.
Let us note that for any r, the hamiltonian

"k | 3
Hy,y = ; £h oot MWy <o 0 Mg,
—
inEL"

describes the 2r-body interactions. We shall impose the convergence of all

the sums:
5= 1.0
5

the hatted index means that we do not sum with respect to i,.

By translation-invariance, S, cannot depend on the choice of i,.

To get a ferromagnetic behaviour, that is the spins tending to align
themselves along some given direction, we shall impose the same sign for
the whole set of coefficients; it will be later vesified that, if we take them as
negative numbers, the hamiltonian will be a positive operator in the Fock
representations.

511, If the sum s‘ks. < 4 =, the expansion (3) is convergent.
a—

Taking firstly:

adH i) = D gifitud, ) = = 22> g fbaui il + Sutuiid)

N iJ

adH ()| < (zZtgu! + Igal) = 45.
¥ J

This formula can easily be peneralized in the lollowing form:

|'ﬂdHtr} (HE':I' | < 4"5.--

WE set:
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If foliows:
\adHy(uf) || < z .adH,;,yliuk:}:. = 4$‘r3, =5,
=t
r=1 F=

Suppose now that: )
ad"H(uf)| € 8",

from:
i adH (ad"H(ui))| < 4r8,8", r=12 ...

we get by induction:

ad B )| < O | adHfad Hu) < 57
r=1
and we can conclude that the expansion (3):
? E:Iijr ad"H(u;)

is absolutely convergent whatever 1 may be in the complex plane.

5.2, Stationary states.

5.2.1. The states w,;,, with a # 0, are not stationary if both b and ¢ are
not zero.

By 4.2.1, it is sufficient to prove that weadH is not everywhere zero.
This is verified, when w o adH is applied to u 1 since we then get:

25:!;3 7 % 1[(Zgﬂ){[a;2 -+ + gkr}

ir

+ 2% z[(zgm)(;a P =0+ )+ gm] +2x 3] E

i#r

which i5s & non zero number when ab £ 0.

52.2. The states mq,,. and @y,q,q are stationary.

We must prove that w e adH; = 0 (4.2.1). 'We firstly verify that if @ is
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one of these states, then w(uy) = o(ya), . = u¥, uj, 1. Since we are
dealing with product states, we see that:

olad(u). .. 80 Y0 oo 13,) =0

which proves the proposition.
@,0.0 is usually called « Foch state » and wy,,.o « anti-Foch state »
(they are pure states).

5.3, States with positive hamiltonians,

In section 4.2, we saw that every stationary state @ induces a hamilto-
nian H,.. Here, we search for states whose induced hamiltonian is

5.3.1. « Fock and anti-Fock states » induce positive hamiltonians. The
central state induces a vanishing hamiltonian.

To derive positivity of the hamiltonian induced by the « Fock state »,
we must show that:
@y 0,0(7*adH{(y)) 2 0 (8)

for every ye F(K x E, 5). Let: y; = d,1 + e, with d, and e; arbitrary
complex numbers verifying | ;| + | ;| = 1. We easily see that:

ﬂ"lin.b{'}’?[“h ?(]-]' ==2|g|*=x,

The two-body part H,y, of H, verifies (8) for every ye 5(K x E, 3), if
it verifies it for y;y; for any i, je Z'. It follows from:

[iduf, v d- = wlid'sd, 2= + [, v)- [, 7] + [, vd-22,
that:
@y 0,007 111}, =) = X + x; + xpx,

An elementary discussion shows that if
-2<x5<0 and -2<x,<0, then —2<x + x4+ xx;<0.

The positivity of H,y, follows from the negative character of the interaction
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coefficients. The positivity is thus easily extended by induction separately
to any part of the hamiltonian, using:

3 ) i
[0 - s iy - - V) = vl Dl - s v o il

+ [‘*’F". ?i:][ i”ﬂ e “Ii'- YiFig o v e ?u‘]— ¥+ [”ﬁ Tf.]—?r;“ih“i s h”ri-

The case of the « anti-Fock representation », where the cyclic vector is

obtained when all spins are « down », is quite analogous. As to the central
G i £y o i

state mﬂ:llr'\."rllpl.'l"kxz’ frDm ml]‘:!..'f\"'rlnll"‘t"lliiur ] wﬁll.'rvrlli-'lva2{u'l} n one

sees easily that the corresponding hamiltonian vanishes everywhere.

532 The states wy,. with b £ ¢, b and ¢ £ 0, induce hamiltonians
with unbounded expectation values (without upper or lower bound).

Take v,; = du] + eu; with b*|d|? + ¢*|e|® =1 and calculate:
g p (viadH(v,))) = C(6* | d|® — ¢* | e |*)Nb* — ¢*), with C some constant.

This term is obviously positive or negative, depending on a suitable choice
of d and ¢. Ina first step, let us show that when truncated hamiltonians
H7 are considered, adH} is not bounded from below. This can be easily
seen by taking correspondingly a sequence of 2m points in Z° (i), j,),
(122 fa)y + - -y (fms fm)s such that the distance between the set { i, j, } and the
set { i, J, } (k # r), be greater than n (i, and j, can for instance be taken as
nearest neighbours). Thus the following formula holds:

@ 5, {0541+ Vg @dHY (00 05 ))=mCE [ d PP [ e [F)07 =€) (9)

Since the vector | [#,s,o(24,5,)Q0,p.c is normalized to 1, and since (9) grows

k=1
lingarly with m, the proposition is shown, for truncated hamiltonians.

The result will he extended to adH; by noting thart:

| @0ac(] Jotaladtty - adit)(] Jo)) | < mR,
k=1 E=1
= =
where R, is the remaining term 42."5, of the expansion § = 42!'5,.
FEr+d r=1
This bound clearly goes to zero (for fixed m), when » goes to infinity, so
that the result is obtained.
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Remark. — A magnetic field h > ] being introduced, one can remark

L 4
firstly that the invariant states are still the same, secondly that the state
with positive hamiltonian is one of the Fock states, depending on the sign
of h.

6. HEISENBERG MODEL

6.1. Formal hamiltonian.
3
Let: v, =Zu:ug. The: Vislscaireeg hamiltoniae Wil b welilen-ia: the

=1

following form:

Hﬂ = szm dxhoo iz - IJ:f!{;h;;J} e {;hr-l';b} {[G}

F= el

The real coefficients g, 1., s -, 1) &r¢ chosen symmetric with respect
to the exchange of two pairs (i3 y.i5.). (f3)-y, i3,) for any k and j, and also
in the exchange (i3, f3p-) == (f25—1s i3). In contrast to the Ising case,
the indices can now be repeated, and reduction of the corresponding terms
into others of smaller degree is necessary, through the relations:

(U8 "ﬂ+ = Qu iy s

{"H"j}z =3~ 2-5";.!""[
combined with the symmetry properties of the coefficients. Once all
the repetitions have been suppressed, we have to deal with a hamiltonian
such as (10) but the points i; ... f;, are all different, Then we suppose
that the corresponding coefficients are all negative. The Hamiltonian

is « formal », since translation invariance is imposed. We suppose again
the convergence of the sums:

5 = E | 0tytad. e tise = s tord
e
iy

- -

6.1.1. If the sum ZH'SL < =, the Dyson expansion is convergent.

In order to make more apparent the role of spin values, we write:

Sttt o taresstan) = @8t .t sty
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For instance, we get:
Hl:'l| = Zf.r’:-’: “'i[h 5: = %,u"' {1 - l’ 31 3].
i

From:

adH () = > Sflsh st = 2 Sulbusuisk + Bt is)

Pda iJd.=
it follows, for fixed & and y:
adBfs) = D Sotu S+ D el
= Jia

For fixed #, or fixed j, there are two terms in the sum over #, so that:

adH ()| <3 D fal +3 D fyl =3 with e=2> f,] QD
i ] T,

Supposc now that:
la”
lad"H(s)| < - iy

If this inequality holds also for 1, 2, ..., n — |, then:

.ﬂli’f’ﬂ'u‘_zc::mu )| ad ", ()|

=0
0% 1" —p) !
et ——
= ZC" 2 2 :
p=0

So we get:

\ o
ad"H,(s35) QIZCEP!{R_P}[_E"'i}!ﬂ'.
=0

Finally;
lad™ H (o)) | = E(ZIM + Z|fu|) \ad"H, (sis?) | ﬂ___‘__{n+l}z!u"‘“
More generally: ¢ :

adtly(s) | <r(3) o with o= > |l = 45,

It
AN, INST, POINCARE, A-X-4 18
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since | _E;; | = g, and it follows:

i b

[ 3yt T

| adHy(s%) | = zl_adﬂt,,(sj‘) | = zr (4—) =3
r=1 F=1

where ¢ is now some finite number, as in (11); as before, from:

lati)l < oL k=12 .0

we conclude analogously:
1 +1
et < 2T
Thus the Dyson expansion is absolutely convergent if | r| < cl_r’ and we are

now in position to apply 4.1.1.

6.2. Extremal stationary states.

6.2.1. Any extremal symmetric stale (s stationary.

Let o3, be such a state; we must show that w, .. cadHy = 0 (4.2.1).
We firstly verify that:
wa.hf‘{ufjujj]"h}.ﬁ} e mﬂ,h,e(?h:"‘j;ui."}t.}

where y,, (respectively 7;,) take the values 1, ujj, 1 (respectively uj,, u7, 1).
Since we are dealing with product states, the last equality implies:

el
]

0a.p L@ ((et, 30, Yo 13) oo QGG - T5)) = 0.

The proposition is proved.

6.3, States with positive hamiltonians.

We firstly consider the case:
agla=10

Take v;; = du; + eu; with b*|d|* + ¢*| e|*® = 1 as in the Lsing case,
and calculate:

o 5, {vfadH(v))) = C 07 | d|* = * | e )b — )



0N LATTICE SPIN SYSTEMS 17

where C' is some constant, This term is still obviously positive or negative,
depending on a suitable choice of d and e, and the analysis can be pursued
quite analogously to the Ising case. We can state:

6.3.1. The stafes woy.. With b # ¢, b and ¢ # 0, induce hamiltonians
with unbounded expectation values (without upper and lower bound).

Now we turn to the Fock cases and the central one, to derive in a first
step the positivity, when only the two-body interactions are taken into
account. To derive positivity of the hamiltonian induced by the « Fock
state », we must show that:

@y 0,0(1@dHyy(7:)) 2 0

for any
Vo =dyl +eu + e + hjuiug,

This is shown through the result :
oy .G.U{?i-j{;i;p ?41]} omiias 2| € =& |= = Xy

The four-body part of Hy; does not always induce correspondingly a positive
hamiltonian since from:

[[;.;;;K;.;J- Yiffel- = ?u["r"ﬂf;t;r Tol- + [;l;;- Yill- i;l._'"r- %

+ [“:‘”y 7.-,-]3’*.-111:':
it follows that:

fﬂ:,u.o(}‘;ﬁr[{:x;r}@:fz}- ?u}'u]} =Xy T+ Xt X,
and an elementary discussion shows that when®
—4<x;<0 and —4<x,<0, then 45X+ X, + x4, <8

But nevertheless, if we consider all together the two-body and four-body
interactions, if the first ones are sufficiently dominant, then a positive
hamiltonian is induced through H,, + H,s,, more precisely if the following
condition is satisfied:

4 ga,l = SS‘ g:.-_,i_}ﬂrp o
k.r
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A simple graphical analysis shows, that quite generally, the latter inequality
must be generalized into the following one:

4!2:; }Sziﬁ’:‘.'mkra""{?—u Z :gI;U]Iter}H.F]

k.r kor,mondp
2 * | r
¥ =1} Z Buppipy st I T8 Z Eiigyikr)imn)
Pl =1 k,r.m.n
4 | [ 2 | o |
+0-D) D |suasmatorn o @D gl 02
krmmnlprg Fraesdm

The summations are extended over all the indices, but i and j are missing.
The « anti-Fock » case is quite analogous.
In the central case, the corresponding hamiltonian vanishes evervwhere,
since the result in fact does not effectively depend on the hamiltonian,

6.3.2. If the condition (12) is satisfied, the « Fock and anti-Fock » states
induce positive hamiltonians.  The central state induces a vanishing hamilto-
nign.

Bla#0

6.3.3. The stationary states inducing positive hamiltonians are w, . q
where |a| = b.

From the commutation relation:
[':':ir."js u']. = 2”:'*“? < lu,su;'
it follows that
@y, ) [y, ' ]4) = 26%(— B* + 7).
More generally:
[H|Hj+ {H,ujj{ulu,}-!- i e 2 uf'] _ = l{:u""u}' = ufufxl Fug 4+ (e ) + . . .)

Using the product law of states we obtain:

0 p (167 ity o0t ) =20 (= 0+ N1+ (@) =B+ +4]a|2Y)}
+{(lal*=P+*P+4|a|B* P +...)

In order to have positivity, we must verify:

— b 4+e2<0 or =0, thatis b=¢c=0 or b=c.
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Quite analogously, a more restrictive condition will be obtained through:
[:‘_::,+{:,u:][;£,}+ SR g I =-=(2u,+—-Zu?ufu_f‘-lu,*u,-_uf){l+;.u,+ s
That is:

B(lal* =5 + )1+ ((a? =B + ) +4|ap?} +...)<0;

it follows that either b = 0 and consequently ¢ = 0, or b* = | a P2+ e
Inversely, from:

[I-r.;;}+ (. ,}(;.;,}+ oo 0 03] = (= 200 + 20w+ 2u w w1 g, +...)
we obtain:
~(laf+ N aP =B + N1 + [(a*=b* +c*) +4]a|’h* } +..) <0.

That is, since the case where @ = ¢ = 0 is already examined:
¥ |al+ L

Consequently b* = |a|® + ¢* if b and ¢ differ from 0. Clearly since
we are now looking for states different from the Fock states and the central
one, we may suppose that this last condition is verified: from a further
calculation involving the most general term belonging to an algebra at a
given point #, it follows, with 7, = al + Bu’ + yu + ou

@ o7ty + (e None) + . ., 7-) = (1 + 4| a’6* + (4 [a 6 + ...)
«(=2p8b%a~2| B12b* | a|? + 2fyb a® + 2386 a + 2;P(ab)’
—|71*|a]?® — 45pb’a + 45yb°a~ 4|5 |* | a|*b?),

when the relation | a|? — #* + ¢* = 0 is taken into account,
It is possible to suppose a to be a real positive number, by multiplying .
7, @ by some phases, so that, if we take f = — y = — &, we get the condition:

- 12a%y + 126%ay* = — 1290 ala = b) < 0,

so that necessarily a > b.

Since b* = a® + ¢* 2 4%, it follows ¢ = 0 and finally |a[*> = b*. So
we get only pure states; moreover, there is not any privileged direction,
and this is an expected result; it is now quite easy to verify positivity, which
results, just as in the case 2) from the dominance condition of two-body
interactions,
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Remark. — A magnetic field A > uj being introduced, one can remark

k
firstly that the invariant states are wgs,., secondly the state with positive

hamiltonian is one of the Fock states, depending on the sign of A.
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