The theorem on Unitary Equivalence of Fock Representations

by

J. MANUCEAU

Faculté des Sciences Saint-Charles, 13-Marseille 3e (France)

and A. VERBEURE

Instituut voor Theoretische Fysica, Universiteit Leuven (Belgium).

ABSTRACT. — We prove that two Fock states ω_I and ω_K (not necessarily gauge invariant) on the CAR-algebra are unitarily equivalent if and only if |J-K| is a Hilbert-Schmidt operator. We calculate explicitly the norm difference $||\omega_I-\omega_K||$.

Let (H, s) be a separable Euclidean space and J and K complex structures on (H, s), i. e.

$$J^{+} = -J;$$
 $J^{s} = -1,$
 $K^{-} = -K;$ $K^{s} = -1.$

Consider the operators

$$P = [J, K]_{+}; Q = [J, K]_{-}$$

and let $P = U \mid P \mid$, $Q = V \mid Q \mid$ be their polar decompositions, $\mid Q \mid$, $\mid P \mid$ and U commute with J and K; consequently the dimension of Ker P is even or infinite; Q is a normal operator, therefore V can be chosen such that $V^+ = -V$, $V^z = 1$. The same notations as in [1] are used: $A = \overline{A} (H, s)$ is the CAR-algebra and A = A = A = A and A = A = A satisfies A = A = A and A = A satisfies A = A = A and A = A satisfies A = A = A

Theorem 1. — Let the operator P be diagonalizable [i. e. $(\psi_i)_{i \in \mathbb{N}}$ orthonormal basis of H such that $P \psi_i = \mu_i \psi_i$, $\mu_i \in \mathbb{R}$ (reals)], then there exists a family of subspaces $(H_n)_{n \in \mathbb{N}}$ of H invariant under J and K such that :

(ii) dim H_0 and dim H_1 is even or infinite, dim $H_n = 4$ for $n \ge 2$;

(iii)
$$P = \sum_{n} \lambda_n p_n$$
, where $P_n H = H_n$; $\lambda_0 = -2$, $\lambda_1 = 2$ and $-2 < \lambda_n < 2$ for $n \ge 2$.

Proof. — Let F = Ker Q; F and F^{\perp} (orthogonal complement of F for s) are invariant for J and K.

- (a) Suppose $F^1 = \{0\}$; then $JK = \frac{P}{2}$ is unitary and Hermitian, there exists a decomposition $F = H_0 + H_1$ such that $P = -P_0 + P_1$, where P_0 and P_1 are the orthogonal projection operators on H_0 respectively H_1 , which are invariant under J and K and therefore dim H_0 and dim H_1 is even or infinite.
- (b) Suppose $F=\{0\}$, let H_z be subspaces of H such that $PH_z=\lambda_z\,H_z$. Because $[P,J]_-=[P,K]_-=0$, the subspaces H_z are invariant for J and K. Remark that $P^z+Q^+Q=4$, $Q^+Q=|Q|^2$; therefore |Q| has the same proper subspaces H_z as |P|. Let $|Q|H_z=\mu_z\,H_z$, then $\lambda_z^2+\mu_z^2=4$ for all z. Take any $\psi_\lambda\!\in\!H_\lambda$ and consider the subspaces H_{ψ_λ} generated by the real orthogonal set $|\psi_\lambda,V\psi_\lambda,J\psi_\lambda,JV\psi_\lambda|$. It is clear that H_{ψ_λ} is a real subspace invariant under J and K of dimension four.

In general $H = F + F^{\perp}$ the results of (a) and (b) prove the theorem.

Q. E. D.

Lemma. — Let π_1 and π_K be the Fock representations associated with J respectively K. If π_1 and π_K are unitarily equivalent then $[J, K]_+$ has — 2 as the only accumulation point of its spectrum.

Proof. — Let | \$\psi_j\$|_{j∈N}\$ be any infinite orthonormal set of H and

$$\mathbf{L}_n = \frac{-i}{n} \sum_{i=1}^n \mathbf{B} (\psi_i) \mathbf{B} (\mathbf{J} \psi_i),$$

then

$$(\Omega_J, \pi_J(L_n) \Omega_J) = \omega_J(L_n) = 1.$$

Using Schwartz's inequality, we have

$$\parallel \pi_{\mathtt{J}} \left(\mathrm{L}_{n} \right) \Omega_{\mathtt{J}} \parallel = 1$$
 furthermore $\left\| \left[\prod_{i=1}^{k} \mathrm{B} \left(\psi_{i} \right), \mathrm{L}_{n} \right] \right\| \leq \frac{k}{n}$

proving

$$1 - \frac{k}{n} \leq \left\| \pi_{J} \left(\mathbf{L}_{n} \right) \prod_{i=1}^{k} \pi_{J} \left(\mathbf{B} \left(\psi_{i} \right) \right) \Omega_{J} \right\| \leq 1 + \frac{k}{n},$$

i. e. π_J (L_n) tends strongly to one for n tending to infinity. Because π_J and π_K are unitarily equivalent π_K (L_n) tends strongly to one on \mathcal{H}_K and therefore weakly.

Further the expression

$$\omega_{\mathbb{K}}(\mathbb{L}_n) = (\Omega_{\mathbb{K}}, \pi_{\mathbb{K}}(\mathbb{L}_n) \Omega_{\mathbb{K}}) = -\frac{1}{2n} \sum_{i=1}^n s(\mathbb{P} \psi_i, \psi_i)$$

must tend to one for all orthonormal sets $(\psi_i)_{i \in \mathbb{N}}$ which is possible if P has no accumulation points in its spectrum different from -2.

Theorem 2. — If ω_1 and ω_K are pure quasi-free states, then π_1 and π_K are unitarily equivalent iff |J - K| is a Hilbert-Schmidt operator.

Proof. - By Theorem 1,

$$H = \bigoplus_{n=0}^{\infty} H_n; \qquad P = \sum_{n=0}^{\infty} \lambda_n P_n; \qquad P_n H = H_n,$$

where dim $H_n = 4$ for $n \ge 2$. By the lemma, dim $H_1 < \infty$. Let $|\Phi_1, \ldots, \Phi_r|$; $J \Phi_1, \ldots, J \Phi_r|$ be an orthonormal basis of H_1 and

$$u_1 = \prod_{k=1}^r B(\Phi_k).$$

In each H_n $(n \ge 2)$ we choose the following orthonormal basis $(\psi_n, V \psi_n, J \psi_n, J V \psi_n)$, where ψ_n is any normalized vector of H_n and let

$$u_n = B (J \psi_n) B (\psi_n),$$

where

$$\psi_n = \frac{1}{(2 - \lambda_n)^{\frac{1}{2}}} (J \psi_n + K \psi_n).$$

If u_0 is the unit of $\overline{\mathcal{A}}(H_0, s)$, then for all $n \ge 0$ and all $x \in \overline{\mathcal{A}}(H_n, s)$,

$$\omega_K(x) = \omega_1(u_n^* x u_n).$$

In order that $U = \bigotimes_{n=0}^{\infty} \pi_{J_n}(u_n)$ is an unitary operator on $\partial \mathcal{C}_J = \bigotimes_{n=0}^{\infty} \partial \mathcal{C}_{J_n}$ $(J_n \text{ is the restriction of } J \text{ to } H_n)$ it is necessary and sufficient that

$$U \Omega_{J} \in \mathcal{H}_{J} \text{ i. e.} = \prod_{n=1}^{s} (\Omega_{J_{n}}, \pi_{J_{n}}(u_{n}) \Omega_{J_{n}}) = \prod_{n=1}^{s} \frac{1}{2} (2 - \lambda_{n})^{\frac{1}{2}}$$

does not vanish. But

$$\begin{split} \prod_{n=1}^{\infty} \frac{1}{2} (2 - \lambda_n)^{\frac{1}{2}} \neq 0 &\iff & \prod_{n=1}^{\infty} \left(\frac{1}{2} - \frac{\lambda_n}{4} \right) \neq 0 \\ &\iff & \frac{1}{4} \sum_{n=1}^{\infty} (2 + \lambda_n) < \infty &\iff & \operatorname{Tr} \left(2 + P \right) < \infty. \end{split}$$

Otherwise $(J - K)^+(J - K) = 2 + P$, therefore π_I and π_K are unitarily equivalent if |J - K| is a Hilbert-Schmidt operator.

Conversely, suppose that | J - K | is not a Hilbert-Schmidt operator,

hence
$$\prod_{t=1}^{\infty}\left(\frac{1}{2}-\frac{\lambda_t}{4}\right)=0$$
. Let $\mathrm{E}_{n,m}=\bigoplus_{t=n}^{m}\mathrm{H}_t$; the restrictions of $\omega_{\mathbf{J}}$

and ω_{R} to $\mathfrak{C}(E_{n,m},s)$ remain pure states unitarily equivalent because

if
$$U_{n,m} = \prod_{i=n}^{m} u_i$$
, then

$$\forall x \in \mathfrak{A} (E_{n,m}, s), \quad \omega_x(x) = \omega_K (u_{n,m} x u_{n,m}^*) \quad [1].$$

Hence by Lemma 2.4 of [2]

$$\begin{split} \|\left(\omega_{\mathtt{J}} - \omega_{\mathtt{K}}\right) &\mid \mathfrak{C}(\mathbf{E}_{n,m}, s) \| = 2\left(1 - \|\omega_{\mathtt{J}}\left(u_{n,m}\right)\|^{2}\right)^{\frac{1}{2}} \\ &= 2\left(1 - \prod_{i=n}^{m} \left(\frac{1}{2} - \frac{\lambda_{i}}{4}\right)\right)^{\frac{1}{2}} \end{split}$$

Denote by \mathfrak{A} $(E_n, s)^c$ the commutant of \mathfrak{A} (E_n, s) in \mathfrak{A} . By lemma 2.3 of [2],

$$\|(\omega_J - \omega_K)\| \otimes (E_n, s)^c\| = \|(\omega_J - \omega_K)\| \otimes (E_n^1, s)\|$$

Since $\overline{\alpha}(E_n, s)$ is the inductive limit of $\alpha(E_{n,m}, s)$ when $m \to \infty$, we have

$$\|(\omega_{\mathtt{J}} - \omega_{\mathtt{K}}) \mid \alpha(\mathsf{E}_{n}, s)^{c}\| = \lim_{m \to \infty} \|(\omega_{\mathtt{J}} - \omega_{\mathtt{K}}) \mid \alpha(\mathsf{E}_{n,m}, s)\| = 2.$$

By lemma 2.1 of [2] π_J and π_K are not unitarily equivalent.

Q. E. D.

Corollary. — The representations π_1 and π_K are unitarity equivalent if $\|\omega_1-\omega_K\|<2$, and

$$\parallel \omega_J - \omega_K \parallel = 2 \bigg(1 - \prod_{t=1}^* \bigg(\frac{1}{2} - \frac{\lambda_t}{4} \bigg) \bigg)^{\frac{t}{2}} \cdot$$

Q. E. D.

Proof. — Lemma 2.1 of [2] proves that if π_J is not unitarily equivalent with π_K , then $\| \omega_J - \omega_K \| = 2$. Otherwise if π_J and π_K are equivalent, it follows from the calculations done in Theorem 2, that

$$\|\omega_{\mathbf{J}} - \omega_{\mathbf{K}}\| = 2\left(1 - \prod_{i=1}^{\infty} \left(\frac{1}{2} - \frac{\lambda_i}{4}\right)\right)^{\frac{1}{2}}$$

REFERENCES

[1] E. Balsley, J. Manuceau and A. Verbeure, Commun. math. Phys., 8, 1968, p. 315.

[2] R. T. Powers and E. Sortmer, Commun. math. Phys., vol. 16, 1970, p. 1.

(Manuscrit reçu le 6 juillet 1971.)