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ABSTRACT. — We prove that two Fock states w, and wy (not necessa-
rily gauge invariant) on the CAR-algebra are unitarily equivalent if
and only if J—K is a Hilbert-5chmidt operator. We calculate
explicitly the norm difference || a; — g |,

Let (H, s) be a separable Euclidean space and J and K complex struc-

tures on (H, 5), L e.
J =] Ji==1,

K-=—K; Ki==— 1

Consider the operators
P=[Jr1{]+: QT[JpK]_

and let P=U P, Q=V Q| be their polar decompositions, | Q |,
| P and U commute with J and K; consequently the dimension of Eer P
is even or infinite; Q is a normal operator, therefore V can be chosen
such that V* =—7V, Vt —=1. The same notations as in [1] are
used : @ = @ (H, 5} is the CAR-algebra and w, is any pure quasi-free
state on : J satisfies : J* =—J, J* =—1.

Tusorem 1. — Let the operalor P be diagonalizable [i.e. = (L).em
orthonormal basis of H such that P L, = w1, 2, €R (reals)|, then there
exists a family of subspaces (H.).ex of H invariant under J and K such
that :

() H= 2 Hs;
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(ii) dim H, and dim H, is even or infinife, dim I, =4 for n = 2;

(i) P =E 2o Dy wWhere P, H = Hot by =— 2, 8, =2and — 2 <C 3, < 2

for n =2,

Proof. — Let F = Ker }; ¥ and F! (orthogonal complement of F
for s) are invariant for J and K.

(a) Suppose FL = 0 |; then JK = g is unitary and Hermitian, there

exists a decomposition F = H; + H, such that P = — P, 4 P,, where
P, and P, are the orthogonal projection operators on H, respectively H,,
which are invariant under J and K and therefore dim H, and dim H,
15 even or inlinite.

{b) Suppose F = | 0 |, let H, be subspaces of H such that PH, = }, H,.
Because [P, J] . =[P, K]- =0, the subspaces H, are invariant for J
and K. Remark that P* L Q- Q =4, Q0+~ = | (} |*; therefore | (} | has
the same proper subspaces H, as |P|. Let | Q| H. = ¢t. Hi, then
#2 + pi =4 forall z. Takeany ;€ H, and consider the subspaces ]-L;._*
generated by the real orthogonal set | i, Vi, T4, IV 4o | Tt is
clear that Hy, is a real subspace invariant under .J and K of dimension
four.

In general H = F + F! the results of () and (b)) prove the Ltheorem.

Q. E. D,

Lemma. — Lel =, and =g be the Fock representations associated with
J respeclively K. If =; and nx are unifarily equivalent then [J, K].
has — 2 as the only accnmulation point of its spectrum.

Proof. — Let | Ly |,ex be any infinite orthonormal set of H and

% 0
L.u — “_ lB {I'{'.I'}B {"I .EI"-'I}’
=1
then
(82, 7y (L) ) = wy (Lo) = 1.

Using Sehwarlz's inequality, we have

A

e

[| ez (L) 2 || =1 furthermore ‘

k |
I IB(I':"::I'!LJI] |

proving
- | &

1i— I = wy (L) ll w; (B ﬂ"j} o

AL
-'=1+H.~
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i. e. =; (L) tends strongly to one for n tending to infinity. Because 7,
and =x are unitarily equivalent =z (L.) tends strongly to one on 3
and therefore weakly.

Further the expression

ox (L) = (@ 7x (L) 28 =— 5 3 s P 4 4

=1
must tend to one for all orthonormal sets (4.).gx which is possible if P

has no accumulation points in its spectrum different from — 2.
Q.E. D,

Tuaeorem 2. — If w; and we are pure quasi-free stales, then =; and =x
are unitarily equivalent iff | J— K | is a Hilbert-Schmidl operalor.

Proof. — By Theorem 1,
H = ¢ H.; p:EanP,: P,H = H,,

where dimH, =4 for n=2. By the lemma, dimH, <o Let
(b, ..., ®: J®,...,TJ®. | be an orthonormal basis of H, and

w =] ]B (@)
k=1

In each H.(n:>.2) we choose the following orthonormal basis (L.,
V dny J n, IV &), where 4, is any normalized vector of H. and let

u, =B (JL.) B (y.),
where

B LR
2 - ha)F

If u, is the unit of & (H., 5), then for all n = 0 and all rea (., 3),

wy () = wy; (U2 Tu.).

In order that U = & =, (u.) is an unitary operator on a¢; = & ¢,
i [t

A

(.J. is the restriction of J to H,) it is necessary and sufficient that

UQ e, ie. = ]-[(ﬂ.n, i () ) #[] 3@ =t
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does not vanish. But

[l3e-w'=0 = [I(3-%)=0

P =]

i 5
= iE{E—I—L;.}*{w = Tr2+P)<om.

=g

Otherwise (J — K)* (] — K) = 2 + P, therefore 7; and 7x are unitarily
equivalent if | J—K | is a Hilbert-Schmidt operator.
Conversely, suppose that | J — K| is nol a Hilbert-Schmidt operator,

hence H[z—’—i =0, Let Ejy= @ H; the restrictions of

==

and wg to & (E, ., 5) remain pure states unitarily equivalent because

EL

if U, = ]_[ iy, then

I=n

Yred {En.m, S}:- fay {'T':] =Rl {u-'l-'-" xu:’--"'} [1}'
Hence by Lemma 2.4 of [2]

1 s — ) | € B 8) | = 21 — | 03 (213,) )

_3(1_]|l ) )

Denote by @ (E., 5)° the commutant of ¢t (E,, 5} in &&. By lemma 2.3
of [2],

=

(s = ox) | @ (B s) || = | (s — on) | @ (EE, 9) |-
Since @ (Ei, 5) is the inductive limit of & (E, .., ) when m - o0, we
hawve
[| (tg — mg) | €L (Ey, 83 | :..!IPE [| oy — wg) | A (En oy £) || = 2.

By lemma 2.1 of [2] =, and =x are not unitarily equivalent,
Q. E. D,

CoroLLarY. — The represenlations =, and wy are unitarily equivalent
if | wr—wg | <2, and

=
I ) 1

|jw4—ms:_=2(1_ ( =})

=1 &

- =

Tt

T =
|
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Proof, — Lemma 2.1 of [2] proves that if =, is not unitarily equivalent
with =g, then || w;— wg|| = 2. Otherwise if =; and =5 are equivalent,
it follows from the calculations done in Theorem 2, Lhat

- . ; = __I\.
[| @5 — g [| =2 ( - —l_l l%e i E?)

T
4

Q. E. D,
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