Gauge transformations of second type and their implementation. |I. Fermions
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A necessary and sufficient condition for implementation of some local gauge transformations in a class of irreducible repre-
sentations of the CAR algebra is proved. Some particular results on the unitary group of implementation are then given. Not
all of the pure states induced by these representations are unitarily equivalent to “‘quasifree” states of the class we consider;
it is shown that such a state is unitarily equivalent to a quasifree state if and only if a certain property (characterizing the

“discrete” states) holds.

. PRELIMINARIES
A. The fermion C*-algebra and some of its gauge
transformations of second type

Let (H,s) be a real separable Hilbert space. Consi-
der the CAR algebra G = G(H, s) built on (H,s), i.e.,
the C*-algebra generated by the elements B(y), where
B is a one-to-one linear map of H into @ such that

[BW), B(@], =2s(, )] Vy,9cH

(I the identity element on @).
Suppose A is a linear operator on H such that
(i) dim(ker A) is not odd (this is not a restriction).

(ii) |Al is diagonalizable (where A = J,|A| in the
polar decomposition).

We choose a complex structure J of H such that

J|(ker A)t = J,l (ker A)*4,
J|ker A an arbitrary complex structure of ker A.

We shall write

Al = 22 APy, eR
BEN k

where P, are the orthogonal projections on H, and

H, a two~dimensional real subspace of H which is in-
variant by J and such that H = @, . H,. We remark
that some A, are possibly not dlfferent (From now
we denote by ¢p the Hilbert sum and by (D the weak
sum). A is the infinitesimal generator of a one-para-
meter strongly continuous orthogonal group {Te} 6cR
on H. By Ref.1 we can define an automorphism 7, of
& with

Te(B( ) =

B. The problem

We look for irreducible representations of @ for
which 74 is implementable.

B(T g¥).

This problem was approached by Dell'Antonio.2 We
give here full proofs of the results announced by him
and we generalize some of them.

Il. THE CLASS OF REPRESENTATIONS WE
CONSIDER

Let {lpk ;
=—iB{y

2} be an orthonormal basis of H,; then
$)B(Y2) verifies

[ek’B(¢)]+ =0
0z = 1.

VoeH,,
(. 1)
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The center of @, = G(H,,s) is reduced to the sca-
lars, and therefore any solution of (Il. 1) is ©, or —©,.

Let 79, be an arbitrary irreducible representation of
@, into X, = C2.

We construct the representation 7’ of @ into 3¢ =
Rpen H, from the following: VE €N, j = 1,2,

7 (B@])) = g@f‘l (6,0, ® T (BW) & K
J

x L(I;

szlcz),ej:ﬂ: 1.

It is well known that each @ = &), 2, 2, being a
unitary vector of ¥,, determines an incomplete ten-

sor product 3% = ®k2§n)JCk with C() the equiva-

lence class of © for the relation @ ~ Q7 iff

2 @19, —1] < + .
EEN

1t is not difficult to see that the 3¢ are invariant
subspaces of 7’ and that the restrictions of 7’ to those
subspaces denoted by 7/, are irreducible and there-
fore 7’ is the direct sum of the set of the =y,.

Let 7 be the representation of @ into 3¢ defined by

TBW) Q7 @) e T, BWNe &,

i=12,
where
, (@l) = 0:13’ Trk(B(lPi)) =0

and

1 0
<0 1)is the matrix of ¢3 in the canonical basis of X,

1
(1 0) is the matrix of o7} in the canonical basis of &,

0 —1
( . >is the matrix of ¢ in the canonical basis of I, .
z

Accordingly we shall write 7 = 0,y 7,.3 It is clear
that for each ! € N, a unitary operator U; on &,
exists such that vx € @,, 7,(x) = U,;n}(x)UF. H U =
&,en U, we construct

7T"(x)
hence

TBW) = Q7

=Un'(x)U*, Vxe @;

€,03® m,(B(Y,))® Q?:il I,.

V=&,enV, With V, = 03 if the number of £ < ! such
that ¢, = — lis odd and V, = I, otherwise.
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Clearly n(x) = Va*(x)V*, Vx € @;hence 7'(x) =
Wn(x)W*, Vx < @, where W is a unitary operator on
X.

Any irreducible subrepresentation 7, of 7’ is unitary
equivalent to the subrepresentation 7,4, of 7. There-
fore we can restrict our attention to the study of the
irreducible subrepresentations of 7.

Proposition: m is unitarily equivalent to 7, if
and only if © and 2’ are weakly equivalent.

Proof: Recall that @ = ®,cn Q, and Q' = Qyen 24
are weakly equivalent iff 2, I(1(@,!Q7)] — 1)) < + .
Suppose that @ and @’ are weakly equivalent. By Ref.
4, one can find for each # € N, v, €R such that

@) ren ~ €7 e

Let U = R, ¢"’%I,. Then U € %2 and we have

Ty (%) =Ung(x)U*, Vxe Q.
Conversely, if @ and Q’ are not weakly equivalent, let
us denote

wy(x) = @Il7,(x)Q), xc<a,
and

wQ/(x) = (Q, ,TTQ/(x)Q ,).

Let U, € £(%,) be an unitary operator such that

U, =,
and let
k-1
U, =Q; 7 1;® Uk®®:°+1 i
j j

wy, =1 LU,

The proof will be continued in the same way as in
Sec.IIIA2.

lil. THE THEOREM

We note

2= & <ak> and x, = |a,l2.
reN \fB,

A. Statement

A one-particle evolution 14 is implementable for the
representation 1y, if and only if the following condi-
tion holds:

(A) 2 x,(1—x,)inf(1,22) < + o,

kEN

If this occurs,a strongly continuous one-parameter
group of unitary operators (we shall call such groups
SCOPUG) {Wy}tocr, Weo € To(R)" = £(X2), exists
such that

Vxe @, VB e R
B. Proof

1. Sufficiency
Suppose

20 %, (1 —x,)inf(1,23) < + o,
REN

T (T (%)) = Wom o (x)W_g.

2003
Let

(o )
Uk,e = 0 eixke .

It is a unitary operator on %,. Uy = Qe U, is 2
unitary operator on 3.5 Clearly

M1 (BWE) = Ugm (B(WE)) Ugt,
hence U, implements 7, for the representation .

Changing U, into V, o =e'*U,,, u, € R, Vg =
Qren Vip implements 7.

i=1,2, keN;

We choose u, such that
arg(V, ,92,19,) = 0.
We get
(Vk,erIQ’k)z = }(Uk.erIQk)lz
=1—4x,(1—x,) sin2(x,6/2);
from the hypothesis

2 %,(1 —x,) sin2(x,0/2) < + ;
rEN

hence

20 (V62,192 —11 < + o,

REN
Myen (Vi 9,19,)2 converges and V5@ C 1%, We
note now V, its restriction to 3%, Hence

To(To(x)) = Vmo(x)VE, Vxe @, holds.
It is important to remark that V, has been calculated
for each 8 € R so that {V,}oc g is not a group in the

eneral case. By Ref. 6 there exists a SCOPUG

fwe toeg in £(3€9) such that

vx € @’ Ve e R, "Q(Te (x)) = Weﬂg(x)W_e.

2. Necessity

Condition (A) is equivalent to the both following con-
ditions:

@) 2 x,(1—x) <+,
EIApl=1

(ii) > %, (1—x,) <+ .
EIApl=1

Suppose condition (A) is false. Then either (i) or (ii)
is false. The following two lemmas prove that in the
both cases 36 € R and 2J,.y *, (1 — x,) sin2(x,0/2)
=+ 0,

Lemma 2.1: Let (r),cn, 07, = 1,and let
() pens X € R, [X,] = 1. Then

(Z} 7, sinz(xk9)<+00,V96R>:> 2 7, <+,
kREN kEN

Proof: In our case we have, for », = 4x, (1 —x,),

2 7, sin2(x,0) < + o,
rEN

Vo € R.

In the proof of the sufficient condition we saw that the
convergence of this series implies the existence of an
SCOPUG {Wytecrs W € £(3®) such that
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Vi e @, V8 € R, 7y(74(x)) = Wymg (x)W§.

Now we constructed a set of unitary operators
{Vo}ec r such that

Vie @, V8 e R, 7g(1e(x)) = Vom(x)VE.
7, being an irreducible representation,

We = X(G)Vs;
hence

[wyala)] = Ix@1(VealR)] = [(Veale)

x:R = C, [x(® =1;

and
[(WeQIQ)|2 = 1;1;° [1— 4x,(1 —x,) sin2(x,,6/2)].

Now {W}ge g is strongly continuous in ; therefore
o]
8- |We QA2 =1II" [1 — 4x, (1 —x,) sin2(1,6/2)].

is continuous V8 € R. Let us call

f(8)=1—4x,(1 —x,) sin2(A,6/2), P(8) = xg‘;’ f»(0).

We have P(0) = 1 and § — P(0) is continuous V8 € R,

0=PO)<f,(0)<1l, VkeN, Vs cR,

and
21— £,0)] =< ILogf,(6)], VEeN, Vg cR,
(Log is Neper logarithm)
and o
LogP(8) = Z}l Logf,(8) for small 's.
Y
Let us call

S(9) =>;,§° [1—Fu8)]<+w for P(9) = 0;

i.e., in a neighborhood of 0
£8(9) =— LogP(g) for |8] <=g,<1;

moreover,
25, (0) =% }é)’; [1 = £,(8)] = 25(8) = — Log P(9).

Now,on [— 84, + 8,], 8 = — Log P(6) is an integrable
function, and S is measurable as a pointwise limit of
measurable functions. Hence S is integrable on

[— 6y, + 6y]. We take now 8 € [— 6,5, + 6,],

o 1 —cosa,f
SO =27 n(——5—+) <=

e v (70 sin(A,0)
£,0) = [ s,0at =27 (% - ")

= [° s@at.
Let °

Fo) = J; st
n ’r’ 82
. (_.f_ \

212

8
< fo F(f)dt < + o,

1 — cos{r,6)

(B) ?T 'r,,( ~ >< +© gince [A,] = 1,
%
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© =z (

¥, 62 cos(A,9) — 1
Bl )

4
4 22

absolutely converges, since

z

k 1

7,02
4
&
< fo F()dt < + o,

cos(r ,0) —
222

n

1 n
=0 ) ol

k

8
with £,(6) = [ [1 — fu(0)]dt
Obviously the sum of (B) and (C) shows that

10257 <+ @ with§=0;
k
hence ET 7, < + 0, ]
%

Lemma 2.2: I f:R » R, f(0) =0, f differenti-
ableat 0 and f'(0) = 1, u, € R, (u,),ecn bounded,
7, = 0Vk € N, then

(31 € Vg(0) and Vo € I, ‘?f 7, [f (u,0)]2

<+GO)®E‘: 7pud < + o,
3

Proof: If J € Vg(0) is such that x € J = [[f(x)/x]

3x < f(x) < 3x,

and I € Ug(0) is such that V6 € I,0u, € J, VRN,
then

20 0 00
302 kzl rud = 2;1 7, [fu,6)]2 < 102 21 r,ui. B

Now, we return to the proof of necessity. Let 6 € R
such that 25, .\ %, (1 — x,) sin2(2, 8/2) = + o,

Let u,(8) = Blcos(x ,6/20% — sin(x ,8/2)¥/3) B(¥).
En,m = é H,, un'm(G) = F; uk(G).
k=n k=n

we(x) = @l71,(x)Q), vxea@ 2.1

We have
Vx € G(E, ,,S), wy(x)
= wg o Tolu,, , (0)xuy ().
Since
B() B(¢) B¥) = B2s(¢, )V — ¢) = B(S,9),
S, the symmetry with regard to ¥ (I yil = 1)

PA
For any ¢ € H,, 74(B(¢)) = Ble” *°) = B®,,9),
R A0 the rotation of the argument X 8. Hence (2. 1)
holds.
Let us consider 8, , = n’,:’ ©,; we shall note a,(#,s)
' k

(resp. @, (H,s)) the C*-algebra (resp. the closed

vector-subspace) of @ (H, s), generated by products
of even (resp. odd) number of B(y)'s. Let us denote

w”.m = wnl@e(En'm,S)éB elln,lao(En’m,S),
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o
Tym = &, T, (tensor product “d la Powers”3),
k

Qn,m = ®;n Q-

It is not difficult to see that
C:x + el,:rly € G’e(Eu.m!s) ® el.n-lao(En.ru’S)—)

x+ye &E, ,,s)is a C*-isomorphism and that

Wy m(2) = @ Ty, €(2NQ, L), Vz € G (E, ,,S)
® 0y ,104(E, ,,S). 7, isan irreducible repre-
sentation, and hence w,, ,, is a pure state. Lemma

2.4 of Ref. 7 implies (Q,(E, ,,,S) ® Oy ,4184(E, ,,9)
is a C*-algebra8):

Hwg — wg © T A (E, ,.,8) @ Oy , 18G4(E, )

=201 — |w, (W, ,(8)|2]L/2

= 21— 7 (1 451 ) sinc0 k9>/z)])”‘"-
Now

25 x%,(1 —x,) sin2(x ,8/2) = + ©

REN
implies

I [~ 4x,(1 — x,) sin2(x,6/2)] = 0,

i=n
ie.,

m
lim T [1—4x,(1—x,) sin2(x,6/2)] = 0.

m,® i=n

Denote by @(E,,s)¢ the commutant of G(E,,s) in @.
Then

4 0
(E,, = @ Hk>, E:= & H,
k=1 k=n+l1

i

UE,,s) = G,(EL,s) ® ©; ,Qy(E},s),°
0, (E4,9) © 01 ,80(E%,$) DU %S, [, (Epry,9)
® 01 ,180(E ey x> S)]
Thus
[(wq — wg ° T AE,,s)ell
=l{wg — wq ° TG (Ef,s) ® ©; ,18,(ES,s)

= lim "(wg - wg e Te)lae(ErHl,k’s)
ko0

® 01 ,5-100(Bpar,ps 9l
=2
Now E,,; D E,and Uy E,= Dpen Hpy Upen Ep = H.
Hence, by Lemma 2.1 of Ref. 7, w, and w, ° 74 are

not unitarily equivalent; therefore,no unitary U, €
£(3¢9) can exist such that,vx € &,

Ta (Te(x)) = UyTq (x)U3 s
7o is not implementable for the representation 7,. &

IV. OTHER PROPOSITIONS AND REMARKS

(1) Fix 9 € R;there exists a unitary operator Uy €
£(39) such that

2005
To(To(x)) = Upmo(x) U Vxe@
if and only if
2o x,(1 —x,) sin2(x,6/2) < + o, (Iv.1)

EEN

Proof: If (IV.1) is true, the existence of U, is
checked (see the beginning of Sec.III).

If such a U, exists, U, = eirV,, V, is the operator
constructed (Sec.IIA)
Ug € £(3%), Ug=ceir Q Ve
REN

Ut = eir(V,,Q,), € X9, therefore (Vk'eﬂk)k ~(R,),
which implies 2 ,en 1(Vy,0R,192,) — 1] <+,

Recall that arg(V,,2,/9,) = 0; hence

d (Vk.GleQk) = l(Vk.ermk)I

an
2o %1 —x,) sin2(2,6/2) < + «, |
REN

(2) Let

there exists a unitary operator
N, = 19 ER | Uy € £(X8) such that: Vx € A
To(Te(x)) = Ugmo(x) U,

O, is an additive subgroup of R,
Proof: Let 64,0, € N, Then

2 x,(1—x,) sin2(x,6,/2) < +
REN

and
2 x,(1—x,) sin2(,0,/2) < + ®,
REN

Let us set 7, = x,(1 — x,), oL =1,6,/2, 9% =

X.05/2; 2iren 7x sin2(pl + ¢2) converges, for

M= kZ)N v, sin?(p}) cos2(p?)
€R
= 2, 7, sin2¢} < + o,
EREN
N= 25 7, sin2(p2) cos2(p?)
REN
= 2 7, sin2¢2 < +w,
REN
1Ll = T 2rlsin(g}) sin(ed) cos(s}) cos(e)|
i
= Z“& 7, [sin2(pl) + sin2(p2)]< + .
I¥3

Now
M+N+L= 2, r,sin2(pl + ¢2).
REN
Obviously 8 € N, and € Ny = — 6 € N,

(3) If 2 ,en ¥x(1—%,) < + © we shall say that repre-
sentation 7, is a discrete one. Sec.IIBl implies that
all the monoparticular evolutions are implementable
for every discrete representation.

Statement: If m, is not a discrete representation
(i.e., 2 pen %p(1 —x,) = + ) and if {1}, has nei-
ther 0 nor infinite as accumulation points, then 31

J. Math, Phys., Vol, 13, No. 12, December 1972



2006 J.

=aZ,,a € R, (Z the additive group of the relative
integers).

Proof: Except for a finite number of &'s we have

A, € [a”, 0"} ula’,b] witha” <57 <0 <a’ <V
We can omit a finite number of 2's without changing
9, which is determined by the convergence of some
senes The convergence of which is not changed by
the suppression of a finite number of terms. Let us

build a dividing decomposition of those intervals.

Let a) = %)y = Gy, I = [a} = [a],a}.,] A
finite number of I, overlaps [a’, b’]
Let [r},s,]=[n/3a} ,7/2a},,] which is a proper in-

terval.

If pc I, and 0 c [r],s,],then uo € [n/3,7/2]. In the
same way let us write

all - _an 4= (%)”a"l" = [a” an+1}

A finite number of /7, overlaps [a”, b"].
Let [r2,s%] = [n/2a,
terval,

Ifuc % and g e [r",s”] then uo € [7/3,7/2]. Let
us denote {I,}1<p<m and {[’)’P +8 p1}1=p=m those in-
tervals and let

,7/3a" ] which is a proper in-

L,={keNx, €}
Then

2 x(l—x,)= Z}m x, (1 —x,) = + .
FEN relily

Ifke Lythenx, € [,, 1,8/2¢€ {1;/3 7/2] as soon as
RS [271,, 2sp] hence sin2( A ,0/2) € [1,1] and

2 %, (1 —x,) sin2(,6/2) =
REN

Thus not any U, can exist for not any 6 € [7?, sp]‘

From that we conclude that B, = aZ for some
acR,. u

{4.1) Definitions: As in Sec.IIIB2, we shall denote
a (H s) the closed vector subspace of @ generated
by products of odd number of B({)'s.

A state w on @ will be called quasifree3:10.1 when

w(nf" B(%)) =

i i1<i2<"<in
ipg<ip

€O l;[: w(B((P,,k)B((P]k))y

¢, being the parity of the permutation o

(1 2 2n — 1 292)
o= . )
iy ]1 .o 1 ]n

n

Let us call wy(x) = @17,(x)®), x € @, with

0= (ak).
REN \ B,

Accordingly with Sec. 4. 3 below we call w, a dis-
cvete state
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I D pen 241 — %) < + @ (x, = la,]2).

(4.2) Lemma: w, is quasifree if and only if
B, =0, VEeN,

Proof: Suppose wg is guasifree.
wo (B(W}) = 2 Re(aB;) =0 }
w0 (BW2) = — 2 Im(a,B;) =0

=> ayf; =0and |a|2— B2 =+1;
hence
wq (BlY

wo (BW2) =+ 2Im(a,pB,) =0

],5) =% 2 Re(akﬁ;) =0
}—_'5 akﬁk = 0.

Conversely, suppose Yk €N, a,8, =0. Lety =
nl v, with y, = B3) B(¥/% )or v, = By})ory, =

(:.1/2) if y € @,(H,s),at least there exists a k5 €N
such that Ve, = B(zlzi), j=1lorj=2and

‘-‘)Q(y) = (917?9(3’ Q) - gélN (ngﬂg(yl)&zgi),
%, =1, 0oro}

From
@y, |7, (BN, ) = + 288 (0 By ) =0
@, |7, (BWNoE R, ) = 2ike(e, By, B, )=0

( j = 1 higher position)

7 = 2 lower position

we deduce wy |Gy (H,s) = 0.

Moreover,

o, (g; B(wpzs(w};)) =17 0, (BWDBWE). W

(4.3) Proposition: There exists a quasifree state
wq, unitarily equivalent to w iff w,, is a discrete
state.

Proof: Suppose w,, is unitarily equivalent to a
quasifree state w,, with

af
o'=®( k), a4Bl, =0, VkeN.
reN\B),

Recall that w,, and w, are unitarily equivalent iff
{Sec.II, Proposition)

2 [1—1@.l9

REN

W] <+ o,

which is equivalent to 3 M,L CN|, Mu L =N,
MNL=0

E 11— Iak‘)"’ k? (1- lBkU <A+,

kEEM
2 = Vx,)+ E (1—VI=x,) <+
kEM

which implies that: [1,.,, vx, converges and is dif-
ferent from 0, therefore 50 does Il ey %4, EkEM
(1 —x,)<+ 0;,., v1—x, converges and is dif-
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ferent from 0, therefore so does I1,., (1 —x,),
Diney ¥p <+ 0580 2N %l —x,) < + 0,

Conversely, if 20 ,cn *,(1 —x,) < + ©,let

M={k€N|xk>-§} ) (1—x,) <+ o,
rEM

L=N-M, 2 x, <+,

kEL

which implies [1,c, %, converges and is different
from 0 such as I, (1 —x,) and hence IT,¢\ Vx,

and [T,.; v1—x,. In other words
2 1—Vx)+ 2 0—VI=x,) <+,
kEM kEL

2007

Calling

1

(+3 afy =1, B, =0
9’=®(’ﬁ witn {72 =1 F
N\ B/, laf, =0, B, =1

ifee M
ifkelL’
we have that 25, [1 — [(,192)]] < + © and the
quasifree state wg, is unitarily equivalent to w,. M
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Erratum: Neutron transport equations with spin-orbit
coupling
[J. Math. Phys. 14, 97 (1973)]

L. M. Tannenwald

Department of Physics, University of California, Berkeley, California 94720

(Received 14 March 1973)

Eq. (2. 26): F should be a subscript. contain

Eq. (3. 15): The square brackets of the integral should Coll+ lei’n _ 02(77"\ m + C3({i’ AR AT,

Erratum: A stochastic Gaussian beam
[J. Math. Phys. 14, 84 (1973)]

G. C. Papanicolaou, D. McLaughlin, and R. Burridge

Courant Institute of Mathematical Sciences, New York University, New York, New York 10012
(Received 6 March 1973)

The third line of Eq. (3. 13) should be:

1

PO cothg 92P©
-3 2

ax 7 sinhg oxo¢"

fooo R(s) sin(2s)ds

Errata: Gauge transformations of second type and their
implementations. |. Fermions
[J. Math. Phys. 13, 2002 (1972)]

J. F. Gille and J. Manuceau

Centre de Physique Théorigue, C.N.R.S., 13-Marseille 9°, France
(Received 6 March 1973)

The first equation of the second column, p. 2002 should should read
read

, Gre(E;'r S)eael,naO(E;’ S) .'_)U:fl (Ge (E7l+1;/¢’ S)
1(BWY4)) =@*F11'; (¢; 8,) ® 7' (B3N 21l )
j 7

® el,uao(En*-l, k? S).

The second equation of the second column p. 2002 should The inequality and equality of lines 27-30 of the first
read column, p. 2005 should read

. I — WO ,]@,(En, Ye ||
(BWA)) =@, @) @ 7 (BWA)) & ®F,1 1, (wq—weTe) s
7 7 =l (wg —wPTe) A, (EL,5)® ©1,,80(Ex, ) |l

Inequality (ii) in 2. Necessity should read > lim | (wg — weoTe) @, (Epuq,pr 9)
2

kyoo
() 20  xyl —x A2, < + e ® 0 ,00(Egey, ).
BslAgls]
Reference 10 should read E. Balslev and A. Verbeure,
The inclusion of line 24 of the first column, p. 2005 Commun. Math. Phys. 7,55 (1968).
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