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Abstraet, A description of the quasi-free states on a Clifford algebra and their
representations is given, and we prove that the pure quasi-free states are Fock
States.

L. Introduetion

In this paper we complete the study of quasi-free states on a Clifford
algebra started in ref. [1], where essentially the translation invariant
states were treated. Here we use however a different method which
turned out to be more powerful to derive general properties of the set
of quasi-free states. The relation with ref. [1] is established in appendix A.

Our starting point is a C*.Clifford algebra 2((H,#) built on an
euclidean space (H, &) (i. e. H is & real vector space on which a bi.'linm
symmetrie, positive definite form # iz defined). Without loss of
we suppose that K is complete, For more details we refer to ref. [2], LetB
be the canonical mapping of H into %A(H, s) such that

[Biy), Bl¢))ls = 22(y,¢) for p,p€H. {1)

Let T be an element of the group 0(H, s) of orthogonal operators
on (H, &) and «(A(H, s)) the group of automorphisms of 2 (H, 4), then
the mapping B(y) —+ B(T y) can be extended to an automorphism
of A(H, #). Furthermore the operator t: T' -+ vy € 2(A(H, #)) is & mono-
morphism. In theorem 1 we prove that any two Fock states are related by
such an automorphism. We also remark that such an auntomorphism
Wtungewnhmdﬂoguhnbormndmnﬁm{mwpm-

e A,

Furthermore we explicitly construct all representations induced
by quasi-free states and give a criterium under which they are irreducible.
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In section IV we give a more detailed treatment of translation-
invariant quasi-free states. Such states ean be parametrized by pairs of
functions &, 4, ¢ L™ (H") which permit a fruitful application in the
study of physical models.

In appendix B the Clifford algebra 2(H,s) is constructed as an
infinite tensor product of finite dimensional C*.alzebras.

IL. Quasi Free States

(Juasi-free states [1] on A(H, #) are completely determined by their
values on the subspace 2, of N(H, ) generated by the set { B{y) Big}|w,
g £ I} They can alzo be characterized as follows,

Proposition 1. Lel o be o quosi-free state on A(H, s); o defermines
a bounded operator 4 on H, defined by

wl)=1 (2)
w(B(y) Blg)=s(p. @) +is(dp.q): pgcH (3)
sutisfying A" =—A* and | 4| = 1. Conversely every such operator A

determines by (2) and (3) a quasi-free slate wy.
Proof. Let v be quasi-free state, then it is determined by (2) and

w(B(y) Blg)) = s(y, @) +ialy, ¢) (4)
where o is a bilinear, antisymmetric, real form on H. A necessary
condition for the positivity is

o([Bly) +i Blg)] [Bly)—i Blg)]) = 0 forall g, pcH
vielding |o] = 1, therefore & iz a continuouns hilinecar form on H and the
completeness of H ensures the existence of an operator 4 on H such that
a = & o 4, The property 4™ = — 4 follows from (1) and (4). The positivity
of the state requires || = 1 and therefore | 4| = 1. Sufficiency follows
from theorem 2 below.

Moreover, if the operator A satisfies 4* = — 4 and 4% = —1, then 4
defines & complex structure on (H, #)? and the corresponding state w
is called a Fock state; 4 = 0 defines the central state w, on 2(H, 5}.

Lemma 1. Let 4, (i =1, 2) be operators on H salisfying A = —A4,
and A} = —1 then there exists an operator T £0(H,s) such that A,

- T+ 4, T.

Froof. Let {&}, ¢} be an orthonormal basis of H such that 4, & = of
and 4, ¢l =—z for i=1,2 and all &; then the operator T of the
Lemma is the linear orthogonal operator on H defined by T & = &
and T g} = ¢f for any k. One verifies

PAd=4;7T and T"TF=1.
1 A" denotes the adjoint of 4 relative to the bilinesr scalar product s
1 Betting (= + i flpy=oxw+ FAyp, xand 7 being real numbers.




Bogolioubov Transformation 317

Theorem 1. If w, and w,, are Fock states on A(H,s), then there
exists an elemenl T € O(H, 3) such that my = @y =7

The proof is straightforward by remarking that T is the operator
defined in Lemma 1 and
wy o Tr(B(y) Blp)) = ws(B(T y) B(T g))=e(Ty, T ¢)

+is(dy Tw, T )
=s(p.g) +ia(T* 4, Ty, ¢) = ey (Bly) Blg)) -

It follows from theorem 1 that if w, is a Fock state, all other Fock
states are obtained by combining w, with all elements of x(2(H, s))
induced by @'(H, 4).

Let w; be a Fock state. The creation and annihilation operators are
defined as

B* (y) =5 (Bly) T i B y)}.-

One easily checks that B+ (y) is c-linear [i. e. B*(J y) =1 B*(y)] and
B-(y) iz c-antilinear [i.e. B-(J y) =—i B-(y)]. The Fock represen-
tation, induced by wy, i= denoted as ; and the representation space
as ;. The Fock space 3 contains the eyclic vector 12, of the represen-
tation satisfying
ay(B-(y) 2y =a_;(Bt(y) L2 ;=0 forany pcH

where 7 ; is the Fock representation induced by w_ ;.

From now on we choose a particular operator J such that J+ = —J,
J8 = —1. By theorem 1, for every state w, with 42 = —1 an operator
T €0(H, 5) can be found such that w, = ey o ry. This proves that the
representation induced by w, is completely described in terms of the
Fock representation induced by a;; a5 a consequence it is also irreduncible.

III. Representations

Now we consider the general case. We look for cyelic representations
7, induced by quasi-free states w,, satisfying 4™ = —4 and 4| = 1.
We make the ansatz

mu(B(P) =75 (BT p @ 1 +08n, BTy}, vel (9

on #y = #;@ H_; with cyclic vector £;® £2_,; 6 is an operator
anticommuting with any 7;(B(y)). v € H and such that 6§ 2, = 2,;
T, and T, are linear operators on H. It is easy to check that x, is a
representation induced by w,, if and only if T, and T, satisfy
T T+ Ty T,=2, (8)
I, —TFJTy=24. n
2 Commun. math, Phyw, Vol 8
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I we can find a solution for T, and T, in equations (6) and (7), and
prove cyclicity, we proved our ansatz, The fact that =4 in (5) induces a
guasi-free state follows from the analogous property of Fock states.

a) Construction of the Representation

First we look for a solution of the equations (6) and (7) and consider
independently the cases when the kernel 9, of 4 iz even or infinite
dimensional and 31, iz odd dimensional.

17) M, is even or infinite dimensional,

Let 4= U|4|? be the polar decomposition of 4 with respect to
the real Hilbert space (H, 5); [T is a partial isometry and 0 = |d| = 1.
The operator A is normal, therefore we can choose U unitary, commuting
with |4| and with any operator commuting with A, T dim M, is
even or infinite, {7 can furthermore be taken anti-hermitean, i.e. U/
= —U, because 4™ = —4 and U |4| = |4| U. The operator U is therefore
a particular complexification of the space (H,s) and there exists an
operator T’ € @(H, &) such that U7 = T7J 7. The equations (6) and (7)
become now

PF T LTt ri=2 (6)

T UT Tt U T =2U4] (7)

where Tf = T T, and T = T+ T..
Now we ean write down a solution of (6°) and (77)
Ti= (14 [A]PR, Ti=(— 4]pn
and therefore
T,= T(L+ |42 Ty=T(1— |4

is a solution of (6) and (7).

2%} M, is odd dimensional.

We add one dimension to U, and consider the space (H’, &") where
H=Rye H and & & symmetric, bilinear, real form such that:
sipy)=1; &iny)=0 and &'y, ¢)=s(y,¢) for yp,pcH We
consider the algebra A(H', &'), containing 2A(H, 2) as a subalgebra, and
the quasi-free state oy, which is defined by

wy(Bly) Bl =o' (¢, @) +is' (A y.¢'): v.@cH
where A’ satisfies: 4'"T=—4"', |4’ =1, A"y=0and A'H=-A4H.
The restriction of a positive form to a subalgebra remains a positive
form, here in fact |A'|'=[4] = 1 and the restriction of the state
ary. to the subalgebra 2 (H, 5) is the quasi-free state wy:

Since the spaces H' and H have the same dimension, there exists
an isomorphism T mapping H' onto H: "V T =154, T' T =1y,
sy 1" g") = &'y, ¢), 8'(T"" 9, T""¢)=s(p, ¢). The complex

* There is a polar decomposition in any real Hilbert space, becanse the existance
of the square root of any positive oparetor is only needed.
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structure J on H defines on H’ a complex structure J' defined by:
J'=T""J T'. The isomorphism T defines an isomorphic mapping
tr: B(y)—= B(T' y) of A(H".<') onto A(H, s) and we have the fol-
lowing relation between the Fock representations ) and 7;:
ap=mnzotp; ;=0 (8)

Now M- is even dimensional and the method of 1°) can be used to get a
representation 7% on #; ® #_; induced by w}- or to find operators
T} and T satisfying the equations
T4+ Tt Ty=21y

Tt n =Tl =24
and ;- (B(y")) for v’ £ H' is of the form (5) on #; ® #_;. Using (8)
and the [wet that 7" induces also an isvmorphism between 4, @ 4,
and #;® #_;, we can write down a representation = of wj on
K, H_;

Ha'{ﬂir’lwfg{ﬂfiﬂlflv'l}ﬂlfﬂﬂﬂ-J(E{T.v'}}i v eHE (9)

where T} = T" Ty and T, = T T; are known to be linear mappings of H'
into H and their restrictions T¥ and T¥ to H map H into H and satisfy
equations (6) and (7). Therefore the restriction

7 (B(y) =|%§{:r:(3ﬂ‘¥ p)®1=88 x,(B(TE y))} for p£ H (10)

of the representation (9) is a representation on #; @ #_, induced by
2 g
b) Cyclicity

To obtain cyclic representations with 2, ® £2_; as cyclic vector
we consider again the following cases

%) N, is even or infinite dimensional.

First remark that T is always invertible; if 7, is invertible then
an argument analogous to that of ref. [4], by using the creation and
annihilation operators associated with J, shows that =, is oyclic; if Ty,
is pot trivial then the representation of =, on the closure of #,
® A(H o Ay, &) Q_y is cyclic.

2°) AN, is odd dimensional.

The operator TF is always invertible on 7" H; if TF is invertible
on I" H then, because of the same argument as in 1°) the subrepresenta-
tion of x, on the closure of A(T" H,s) 2, ® A(T" H, 5) Q_, is cyclic.
I T is not invertible on T H, we must repeat once more the procedure
of 1°) to obtain a cyclic representation.
=y
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We summarize our results of a) and b) in

Theorem 2. Al quasi-free states wy (nduce cyelie representalions or
subrepresentations my of the Jorm (5) on the space ¥, @ H_; with cyelic
veclor {3, ® L_;.

Finally we prove

Theorem 3. In order that a quasi-free state w, with N, of even or in-
finite dimension be pure it iz necessary and aulficient thal A satisfies
A4 =—1.

Proof. The sufficiency follows from Theorem 1. We prove that it is
also necessary. Because dim M, is even or infinite there exists a com-
plexification U/, commuting with 4 (see the proof of theorem 2, a, 17);
suppose A* 4 —1,zhen there exists a vector y such that

Kiyog(l—Atdpiy=0, s(py)=1
and a two-dimensional projection operator & defined by
Byp=alKp,p) Kp+s(UKyp,p) UKy forany pcH.

One verifies that [E,J]- = 0. We define the operators A, and A,:
A=A+ UEand A4, = A— U E ratisfying

Af =—4,; A} =—A, (11)
A+ A =24 (12)

and one casily checks that
Af 4, =1; AT A, =1. (13)

The properties (11) and (13) enable us to define the quasi-free states
oy, and @, such that
wy,(Blgy) Blg)) = slpy. o) + 164y gy, ¢y)
wy,(Blpy) Blgs) = s, ga) + 18 (dy ¢y, @)
g (1) =y (1)=1.
Let {4y, y,} be an orthonormal basis of the subspace £ H of H then
g, (Blyy) Blya)) + wa,(Bly) Blyy) (14)
and it follows from (12) that
w4, (Blw) Blyy) + o4, (Bly) Bly)) =2a,(B(y) Blyy) . (15)
Furthermore
wy (B(p) Blgs)) = w4,(Blg) Blpy) = w.(Blp) Blg)) (16)
if @y or (and) ¢, belong to the orthogonal complement of E H in H.
It follows from (15) and (16) that on 21,

1 1
g =TWJ:+?W"1 “.T_I
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A straightforward calculation shows that (17) holds on all the elemente
of the form B(w,) B(w.) Blgy) ... Blgys) and B(g). .. B(ps,) which
form a basis of A(H, 5}, and therefore (17) holds on the whole alzebra.
This shows that @, is not pure.

Remark. The condition that T, is even or infinite dimensional is
always satisfied in the case of translation or gauge invariant states
(prop. 3).

TV, Invariant States

We take H = L*(R") with the real inner product of p= ¢, + i ¢

and p = y, + i y, defined by
59 9) = [ ((2) 91 (=) + gale) walal) d.
Let T be an orthogonal operator an (H, £). The state w, is said to be
T-invarisnt, if
twyltra)=wyla) forevery acA(H,s).
The condition on 4 in order that w, be T-invariant is given by
Lemma 2. The quasi-free state w, 5 T-invariant if and only if
[4,T).=0.
Froof. The state o, is T-invariant if and only if

g (B(T ¢) B(T ) = a,(Blg) Bly)), ¢.peH.

s(Tg,Ty)+is(AT g, Ty)=2(p,p)+ie(dpp).
Since T is orthogonal, this is equivalent to
[4,T)-=0.
In particular, w, is translation-invariant if and only if
[4, 7). =0 forevery kcBRn,

whers T, is defined by T, f(z) = flx — k), i.e. if 4 is a translation-
invariant operator.
The state w is J — gauge-invariant if and only if

4, ].=0, —x<g<x

or, equivalently
(4,J].=0.
Let us consider
4=—FU AL, 4=—AF 1, 4L (18)

(where / is defined in appendix A, prop. A 1), so that
A=A +AA4,, (19)
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and
[y, /. =[dg. JL. =0 .

Now we choose J =i I, which is a translation-invariant operator.

Then it follows from Lemma 2, that the state wy iz translation-
invariant if and only if 4, and A, are translation-invariant operators,
and @, iz gange-invariant if and only if 4, =0,

Let now my be a translation-invariant state. Then 4, and A, are
complex-linear, transzlation-invariant operators, and it is well known

{ef. [8]) that there exist tempered distributions e; on B® ¢ =1, 2 such
that d; ¢ L™ (BE"), and for ¢ £ H
djp=a,=qp (20)

where the functions &; are the Fourier transforms of a;, and # denotes
convolution. Via the Fourier transformation the operators A; hecome

Adg=d.-§. (21)
The Fourier transform of the operator 4 is defined by
AGE = a8 18 + a =5 P8 (22)

We notiee that 4 is a simple multiplication operator if and only if
is pauge-invariant, In many problems it is an advantage to work with
A, and 4, in the simple form (18) rather than with the operator 4.
This is the case for instance in the treatment of models by variational
procedurcs. For this it is of interest to give the following explicit charac-
terization of the pairs of functions (4, 4,) which define a quasi-free
state w4 via the operator 4 defined by (19), (20) and (21).

Proposition 2, The pair of funclions (4, dq) define a guasi-free state oy
if and only if for any &

(1) (&) is purely imaginary,

(1) d@y(&) = —dy(—£),

(i) & (5)* + |du (& = 1.

FProof. This is proved by a straightforward caleulation, using (21)
and (232),

In an actual problem one can use the pairs of functions (d, 4.)
satisfving (i}—(iii) a5 parameters for the set of quasi-free states or simple
functions of & and &, (ef. [1] and appendix A),

Now we give another applieation of the operators 4, and 4, by
proving the following simple results.

Proposition 3. For a lranslalion-tnvariont state oy the dimension of the
null space of A iz equal to 0 or oo,

Proaf. By (22), the Fourier transform of the equation 4 o =10 is

& (8) §(E) + B3 (— &) Fl—&) =0. (23)
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We decompose the purely imaginary funetion &, in l‘-u:tlxymmatnc
and antisymmetric parts &;, and &,, the antisymmetric function 4,
in to its real and imaginary parts d,, and i d,,, and, with the same
notations, the function § as follows

F=Fre+ Frat 1 {Fra T Fia) -
This gives rise to the following system of equations equivalent to (23)

dy, e TR iy Fea
Gg— Bye Gy —fhy 0 Fra

i . -0, 24
0 e Gy e —dy Pis 24
iy 0 &, —dy Pin

Let .# be the set of points £, where the determinant of the coefficient
matrix of (24) is equal to 0. We have the following two cases

1. .# has measure (). Then the solution of (24) and hence of (23) i 0
almost everywhere, and dim3,; = 0.

2. & has positive measure m. Then we can divide .# into a sequence
of disjoint sets .#;, i =1, 2, . . ., of measure m/2! and for each i construet
s non-trivial solution of (24) (¢!, ¢!, ¢l¥), ¢(%) with support in .#,.
Since the determinant is symmetric in £, the right symmetry properties
can be obtained by use of the above comstruction in a half-space and
reflection. Thus we have obtained a sequence of non.zero orthogonal
functions in the null space of A, hence dim N, = .

By means of proposition 3 we can prove

Proposition 4. For every translalion-invarian!, quasi-free stale wy
there exists a translation-invariant operator J satisfying J+* = —J, J? = —1,
and such that

[4,J)}=0,

i, e, such that 4 is J-gauge-invariant.

Proof. Since dimR, is 0 or o, we can use the construction of
Theorem 2, a, 1°. We need only to add, that J can be chosen translation-
invariant on 4. On the complement of N (4) this is satisfied because
4 is translation-invariant, and J = 4 (4* 4)-% on NF.

Appendix A

We establish the relation between our formalism and that of ref. [1]
Proposition A 1. For every euclidean space (H, s) and Hilbert structure
J on (H, ), there exisiz a closed subspace E of H and an orthogonal linear
operator A on H, satisfying H—E@ JE and At=1, [A,J]. = 0.
Proof. Let {&;, ¢; | i £I} be an orthonormal basis of A related to J
i. e. J g; = g;. The linear operator A is defined by A ¢, = g, and A ¢, = &;
for all i € I; A is a hermitean orthogonal operator satisfying (A4, J1, = 0.
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The projections P = ~ =% and @ = 252 are orthogonal, complemen-

tary and satisfy AP=PA=P, AQ=QA=—Q and JP=¢@J,
then E= PHand H=FE& JE where JE=Q H,

Let J be a complex structure on (H, 4). We define the operators R
and & (see ref, [1]) on the Hilbert space (H; (.,.)=a(.,.)+is(J.,.))
associated with o quasi-fres state wmy by setting

wa(B=(y) Bt (g)) = (v, B ¢)

we(B*(w) B*(¢)) = (Ay, S¢) (inref [1] 4 yp is denoted as )
where B = (BF i BoJ).

By identification we obtain

A=J2R—1—-24128)

and
1 1 !
Reg—g 0, 4dL: S=cdAlJ, A)-.

Bemark that 8 js linear and that — 4% = | is equivalent with B — R* —
—8t8 =10
The connection between (R, ) and (4,, 4,) is given by

1 1
R=§“—Jﬁl}! 3!—!—?;!1’

The usefulness of the operators R and § in physical applications is
due to the fact that R and S are simple linear functions of 4, and A,
commuting with J.

In this section we also formulate the result of theorem 1 in terms
which are commonly nsed among most physicists. If we have two pure
quasi-free states say oy and w; on 2A(H, ) then there exists always a
Bogolinbov transformation relating the respeetive creation and annihila-
tion operators,

For the convenience of the reader we write down explicitly the
Bogoliubov transformation. The creation and annihilation operators
eorresponding to the states ey, and ), are respectively

B3 (y) =5 {B(y) ¥ i B, y))

Bf, (y) =5 {B(y) Ti BU, p)},
and the Bogoliubov transformation reads

Bj, (y) = B}, (U y) + By, (V y)

By, (y) = BY,(V y) + B, (U y)
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whore
Ueg (173 740, T)

V=3 +J, T+, T].

Here T is the operator defined in theorem 1.
Remark that U and ¥V satisfy the well-known consistency equations

U+U4+¥F+¥F=1 and U+F+V+*U=0.

Appendix B

In this appendix we construct the Clifford algebra 2(H,s) as an
infinite tensor product of finite dimensional (*-algebras for the case
that (H, &) is separable. Another construction can be found in ref. [5]

Proposition B 1. For every space (H, 5) of even dimension, there exists
an element B ¢ A(H, s) anticommuting with all B(y), y ¢ H, such thal

- 1.

Proof. Suppose that the dimension of (H, ) is 2n and let {yy, ps. - . .
¥aa) be an orthonormal basis of (H, &) then § can be defined by

B=1i"B(w) Biyy) ... Blysa) -

Proposition B 2. For every space (H, s) where H = H, @ H, and H, is
of even dimension, the C*-algebra A(H, s) is isomorphic with 2A(H,, 3)
® A(H,, #) (the tensor product of C*-algebras [6]).

Proof. The isomorphism £ between A (H, s) and A(Hy, 8) @ A (H,, #) iz
defined by the following relations.

E(Bly)=Bip)el if yeH,
i(Bly)=fe Bly) if yed,

where 8 € A(H,, 5} is defined in proposition B 1.

Proposition B 3. If the space (H, 5) is separable, then the C*.algebra

A(H, 1) is isomorphic M‘Qﬂdm&ersﬂ.kmﬂ*ﬂhﬂruofﬁe:i‘xﬂ
=1
Mﬁw(‘@‘ﬂ,ﬁﬁemmwﬂ'm [T]).

Proof. Let {y;, ¢; | i £ N} be an orthonormal basis of (H, 5) and let
(H,, #) be the subspace of (H, s) generated by {y,, ¢,} for each i ¢ N.
The (*-algebras A(H,, s) are isomorphic with the (*-algebras @, for
each i € N. The isomorphism 7 between A (H, s) and (3 @, is defined by

i=1

nBy)=Hefhe- -8 e Byelele---
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if p<H, For every k £ N the elements f, belong to 2A(H,, 2) and are
defined as in proposition B 1.
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