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ABSTRACT:

The well known notions of conditional entropy (in

SCHANNON's sens) and more generally mutual conditional

information between finite partitions are generalized to any

oc-algebras and we study their properties. If & is an any

og-algebra we identify the set € (8) of finite conditional

entropy knowing the g-algebra €, and prove that it is a complet

metric space.

Lastly we give a relation between the entropy defined

upper and the differential entropy (resp. entropy of a sequence

of random variables)
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INTRODUCTION

Notions of entropy, mutual information and, more generally,
conditional mutual information between finite random variables
(or finite partitions) are well-known 1in Information Theory
and have been successfullv applied in various domains (see for
example [1], [3), [4])., [51, [8]. [9] and the references in).

We develop the notion of conditional mutual information,
(resp. conditional entropy) between any c-algebras.

The first sectior 1s devoted to notations and
definitions. We introduce in the second-one the notions
mentioned above for the case of finite-type c-alqgebras, 1i.e.,
completed and generated tv a finite number of non-null events.
The generalization to any g—-algebra is done 1n a natural way
in the last section.
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I} PRELIMINARIES

I-1) NOTATICHNS AND DEFINITIONS

*) Let (2, ¥, P) be a complete probability space ; we
denote by o(#), #4 being a subset of %, (resp. o‘(d)) the
oc-algebra (resp. the complete o-algebra) generated by 4.

) An atom 1s an element A of ¥ such that : PB(A) = 0
and, for all B € ¥ such that B¢ A , we have P(B) = P(A) or
P(B) = 0.

REMARKS
) If Al and A? are two different atoms, then P:hl Fa) hzjzc.
) The set of all atoms is at most countable.

*) A (finite or infinite) sequence {An}n of elements in
¥ 1s a partition of the probability space (2, ¥, P) 1if it is
a (algebraic) partition of the set G with non-null events.

*y If 5 is a finite (resp. countable) partition of
the probability space, a({hn]n] is a finite (resp. countable)
o-algebra ; then, o‘((A_ ) ) is called finite-type (resp.
countable-type) ¢-algebra. The elements A_ are the atoms of
the following probability space:

*) The set of finite-type o-algebras is denoted by € _.

REMARKS

*) If a complete o-algebra £ is generated by a countable
set {Anjn of non-null events, then there exists an increasing
sequence {Jn]n of finite o-algebras such that : 4 = o’ (4 4.).-

In fact, take &4 = o(A, sees A ). The inverse is
trivial. Such c-algebras are called separable-type oc-algebras.
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*) A separable type o¢-algebra is not 1in general a
countable-type o¢-algebra. In fact, consider the complete
probability space ( (0,1], J‘[]ai, ﬁi[, i € N), A) where, for
each integer i, o and Hi are elements of Q n [0,1]) and A 1is
the Lebesgue measure on [0,1] ; the o-algebra:

d*([]ai, Hi[}, i € N) is a separable-type one but not a
countable-type one ; in fact, no atoms exist in the considered

space.

*) Usualy, a separable o-algebra is, by definition,
generated by a countable family of events which c¢an be
negligeable (see for example [6]). In the above example, the
g-algebra is a separable type c-algebra in the sense defined

in this paper but not in the usual sense.

") Let of = @' (} 4_) be a separable-type c-algebra,
{An]n being an increasing sequence of finite g¢-algebras. 1f,
for each n, we denote by {Hn} = {A; s ERoaet AE) the partition
which generates Jn ., we always suppose all alorng this paper

that {En+1} is finest than {En}.

1-2) THEOREM
(i) Any separable-type og-algebra can be identified

to a complete separable metric space.
(ii) Any sub-oc~-algebra of a separable-type

og-algebra is a separable-type one.

PROOF :
(ii) is a consequence of (i) ; we show (1).

Let ¥ to be a separable-type c-algebra on Q,
endowed yith a probability P. It is well known (see [7] for
example) that the application:

(1 d : (A,B) €« FXx F —» d(A,B) = P(A 8 B) € R

defines a distance on the set $/#, where we denote by # the

set of all null events.

Let {An}n to be a Cauchy sequence such that:

1

An+1} s

(2) d(A, :
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o
We show in the following that lim A = lim sup A_ = U A
- N p=n
Put Bn =pg“ ﬁp: {Enj being a decreasing seguence, 1t 15 easy
to see that the limit of this sequence in the sense of the

above distance defined on ¥, is lim sup An+ Then, it suffices

to have :. d{An, Bn} — 0, (D — @ ).
k=] k 1
Now, (1) =» d{Fgﬂ An+P,qg“An+q} = Eﬁ:kT
k+1 1
Then, dtpgu hn*p, hn] = zn—l'
. 1
and, lim d( U, Apspt Pn ) = d(B_, A ) = —.
Kk — @ 2
REMARKS
(1) Let £ be an algebra ; then #, the closure of # in
the sense of the distance (1), is the o-algebra o’(#4). In
fact, YA ¢ o'(A), ¥Ye > 0, 3A'e 4 such that : P(A A A') < ¢.

(2) The notion of separable-type og-algebra that we have
been considering coincides with the notion of separability on

complete metric space.

I-3 PROPOSITION
Suppose 3 to be a separable-type o-algebra.Then, =x

being any element of QI
-) either x belongs to an atom,
~=) either there exists a decreasing sequence {Bn}nc F
which contains x, such that, for each n, P{En} = 0
and 1%m P{En} = 0.

PROOF
F=0(U ﬂn}, (Jn] being an increasing sequence of

n
b {x)

finite o-algebras. For each n, let us denote by AL the

element of the partition in ‘n wich contains X.
{ h;(:)
this partition containing x, and P{A;“'} = 0. Either
n A;“’ is an atom containing x, either {Aé“‘}n is the
n .

desired sequence.

}n is a decreasing sequence in ¥, each element of
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II) INFORMATION, ENTROPY OF FINITE-TYPE ZI-ALGEBRAS.

I1-1) DEFINRITIONS

(al, hz, ., A“}, [El, HE' C Bm} are finite
partitions which generate respectively the elements A, and
B of £ :

a

€ is an any c-algebra,

; is the continue function given by
y: [0,1] — [0,1] (%)

= —-xLog(x) if xe]0,1)
1(0) =

0.
We define:

i)- the mutual information

function between o
given G:

and B

P{;‘-\in B |1E)
5(4,BIE) = E: P(A nB |€).Log - 2

P{&.18).P(B |E
P (A;18).P(B IE)

- The mutual information between #4 and B given G:
1(4,Bl€) = t-:[fn:d,mmj

ii)-the entropy function of 4

given E, the
non-negative function:

H(AIE) = 5(A,418)= ) 3[P(A IE)]
- the entropy of £ given E:
H(L|8) = E{H{ﬂﬁ'j]
REMAREKES

-) The function 3§ and ¥ do not depend on the choice

of
partitions generating 4 and ¥ respectively.

=) 3(4,BI€) = H(4|B) + H(BIG) - H(A v BIE) a.ea.

—) Let §_ be the og-algebra generated by the null events
and € one element of ED generated by (Cl, Cz, g EP},
we fined the formulars of the wusuals information I and

entropy H by:

*)I(4,B18) = E[J{J,E!E]]
P(R;n B IC )
- Z Pm'ﬁalnc“]'mg " P(A.IC ).P(B IC.)
LRI 1 k J ke
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x*) H(AL|E) = E[H{Am}]z ZP{C"L 1[P(hIIChH
i sk

= H(d v €) - H(E).

and H(d4) = H(4IF,) = H(4IF) =) 3[P(A)].
i
***) I(4,B) = I(4,BIF) = 3(4,8IF )

P(A nB )

=z P(AnB ) Log I

o ) P(A,).P(B)

= H(d) + H(B) - H(d v B)

= H(d) - H(4IB) = H(B) - H(BId).

I1-2) PROPERTIES OF 3.
1) 3 is non-negative and strictly concave.
2} 3 is sub=-additive and then o-sub-additive
Proof:
The sub-additivity of 3 comes from the fact that the function
t define by £(x) = 5(x) + 3(y) - s(x+y) where, vye[0,1] and
X€[0, 1-v]) has a non—negative derivative and that t(0) = 0.

It is easy to prove the others properties.

II-3) CONDITIONAL INDEPENDANCE OF Z-ALGEBRAS.

We say that 4 and 8 are conditionally independant

given €, and we denote 4UEB if:
[
V(A,B)edxB, P(AnBIE) = P(AIE).P(BIE) a.s.

PROPOSITION.
vd, B e Gﬂ V & oc-algebra
1) 9(4,BIE) 2 0 i.e H(AVBIC)= H(LIC)+H(BIE)
2) 9(A,BI€) = 0 a.4 e AIB = I1(4,BI6) = 0
c
Proof:
H(AVBIE) - H(BIE) = ZP{BJIE}.;[
i)

Jensen’s inegality proves (1) and (2) is a consequence of the
strictly concavity of the function s.

P(ALHEJIE} ]

P(B,186)
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I1I-4) FUNDAMENTAL PROPERTIES.

4 and B, are eléments of Eﬁ, ¥ and €° are any

cg-algebras

1) B c € e H(BIE) = 0

and if G e Eﬂ E c B e H{(BIE) = H(B) - H(E)
ii)y 4 € B « H(LIE) = H(BIB)
iii) € ¢ € =» H(AIC) = H(AIE")
iv) B ¢ € = H(AvBIE) = H(AIE) and dgﬁ

Proof: It is easy to prove (ii), (iv) and the necessary
condition of i}.
For the sufficient condition of i), let {B}} a finite

partition which generate 8; we have XN(B|E) = ; }[P{EJ|G]].

]
-

i
If W(B|E) = 0, E E{P{leﬂjJ = 0 and vj, 5[P:EJ|G}] = 0
sl .
a.a then P{leﬁj is a characteristiec function a. a.; soc that,

E[lE_[E] = 1C with € < E.
]

From E[{IBJ-

C ¢ B 4. a.

J
But E[lﬂllﬁ] = 1c = P{Bj} = P{C). Then B, =Ca. &

1C}.lc] = § we deduce that P{Banj = P(C) and

and B c E.

For iii) we have, H(A|E) = Z;[P{Ailr;n and:

E[H{JIE]IE'] = z E

:[P({Ailﬁ}]lﬂ'lyf E 5[ E{PIA_IIE}IE."}]

But E[P{Allt‘?}lﬁ‘] = P(A IE")

so that E[H{Aiﬁ}lﬁ'] = H(416*), we can then deduce that:

E{ z[x{.na}m'] } < E {Hun:f;} and H(AIE) = H(4IE’).
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II-5) CONDITIONAL DISTANCE.

THEOREME-1 «& is an element of En, € is a o-algebra

and {Enhﬁﬂ increasing seguence 1in Eﬁ so that (En] e ¢+§

6= o(v E ) .
n n
Then H(A|E) = lim H(JIEﬂ}
; ik
Proof
H(«A]|€) = Inf H(ALIB) (II=-4-1ii)
Bl
E rintte
We have to prove that H(«IE) = Inf H(L|EB)
Bl
lﬂ Frinite
Because ¥ = o(u G ) , we can say that:
i n
. -
VAeG ve>0 2n ¢ N 3B € § ; P(AAB) = | 1, - 1] = ¢

and U £°(€ )is dense in EE{E}. The orthogonal projection of
n
n

1, on £°(5) is P(AIE).

It results from the preceding that,

P(AIE ) —— P(AIE) and H(LIT) = lim H(4IE )
i n 3 @ n 3 m B
THEOREME 2-

4 and B being elements of Sﬂ ., B a o-algebra,
H(AvBI|E) = H(AIBVE) + H(BIE)

This result is immediat for © € & . The general case is an
immediat consequence of the Theoreme-1.

COROLLARY: For fixed E e En
5(4,BIB) = §,.(4,8) = H(&BIE) - I(4,BIE)
define a semi-distance on Eﬂ.
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Properties of aﬁ: P
i) 5E(d,ﬂ] = H(A[BvE) + H(BIAEC)
ii) If B€ &.(4,B) = H(AIE)

iii) If & is the trivial og-algebra,
6E{J,B] = d(«4,B) =H(AIB) + H(BI4) is a distance on Eﬂ

riv) 4, 4', B, and B’ being elements of EE, & an any

g-algebra,
=) IH(A1E) = H(BIE)| = §_(4,3B)
=) 2I(A,BI8) + 5,(4,8) = H(AIE) + H(BIE)
=) 1I{4,BIE) — I(&* B IE)| = 2{8 (4, 4") + 5,(B,8")]

v) 33(4,ﬁ1= 0 define an eguivalence relation on
£ and 6{_:(:1','3} = 0 e AvE = Bl

%]

I1] GENERALIZATION.

We have in the precedings defined notions of entropy and
mutual information for finite-type o-algebras. We try in this
section to extend these notions, by a natural way, to any
sub-c-algebra of ¥, supposed to be from now a separable-type
og-algebra on Q.

II1 -1) DEFINITIONS

4 and B being complete sub-g-algebras of ¥, we call

i) mutual information between A and B given €&, the
guantity
I(£,BI€) = sup I(V, ¥IE)
VeE ,WeE
4] o
Vecd WcE

ii) entropy of & given &, the guantity:
H(4IE) = I(4,415).

III -2) THEOREM:

Let 4 = o'(J 4.) where (4 ) is an increasing

seqguence in €, and let B e €, such that 8 ¢ £. Then,

ve » 0, 3 ne mn such that H(B) - ¢ = H{ﬂn ).
a
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PROOF

Put B = ﬂ".{Blf c ey BP} where (Bi}i=1""p is

a partition of 2. It is known ([7]) that:

1 6
¥Yé >0, V1L = = i ‘e i 4 -
¢ 1 s P, 3 A U & such that P[Blﬂ Al) f 5

52
R

ne s

A =A7\ UA Vi =2, ..., p and AP1= (.

{ﬁ_hc“ s is a partition of 0 which elements are
1 S amom

contained in one of the ‘n* say dn , and we have:
a

vll‘ lf l % p: P(Hiﬁ -n'l..l < EJ P[AP"‘!} < é

Morever, ¥i, 1 = i = p, |P(Bi) - P(Ai)]| = P{Biﬁ Ai] < &,

Using continuity of H(B) with respect to P(B ), ...,
P(Bpj, it is epasy to show:
ve >0, 3¢ > 0, ¥vi, 1 = 1 = p, |P{5i3—th.

]}i = 1 and
P(A )<é&
p4l

Then, |H(B) - H(e(A, ..., A ))| <c¢

Choose 8 = 1, the theorem follows from,
H(o(A, --.., Haqll = H{ﬂnﬂ]
and the preceding inequality.
From the above theorem we deduce the following
corollary, very useful for calculations of entropy and
information for every complete sub-c-algebras contained in ¥

(see I-2).

COROLLARY 1:
If &4 = o H dn} and B = a*(H En}‘

with {Jn]n (resp. {ﬂn]n} increasing sequences of finite

g-algebras, then
1) H(4) = 1imT H(4 )

ii) I(«4,B) =ﬁ§ﬁTT I(4 , B ) = lipT I(<_, B )

All definitions and properties in section II cand be extended
without difficulties and without modification to the set:
€ ={ 46, H(A) < += }, finite sums being subtituted with
absolutely convergent series.
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ITI-3) PROPOSITION
Let 4 be any complete sub-c-algebra of ¥, then if H(«4)

is finite, fd « ﬂr
PROOF : .
Put 4 = o*¢{ H Jnj with (ﬂn}n an increasing sequence

of finite o-algebras.

Denote by F
I T 5 .
*) [Anhel a partition generating ‘n -
n
1
*) {4 =) (log ——).1,1
L ie] PIR“} o
n
Notice that E(L,) = H[dn}f (<, ) is an increasing seguence
n n
and 3 o
vx € 2 (., (x) = log . where &~ is the element of
r.“ [—‘{,FLH“} n
1]

the partition {hihel .wich contalins X.
N n

From 1-3), ¥x € Q
*) 1f x belongs to an atom, ﬂliﬂ 2 cd (X} = {(R)< +m
n

*) if x does not belong to an atom, {(X) = + w=.
Then, if £ ¢ &€, the complementary set of the set of atoms 1is
non-null and, liﬂ H{Jn] = H(«d) = E(L) = + m.

I11-4) THEOREM
For each 4, B € EI, put :

d(d4, B) = H(41B) + H(Bl|L), then we define a distance on

€ . and the space (£, d) is a complete metric space.

Morever [Ea, d) is dense in {E‘, )

PROOQF:
d is a distance on El as on Sn. Consider now a

Cauchy sequence {dn}n in {E], d)} such that

d (4 , &) € X,
n+l mn n
2
p=1 P p+l p
d (HEU IIEnH:" hEG Jﬁ+h] el {tfo ‘ﬁ+u| hgﬂ l‘n+h.:' =
P
H{dn+p+1' hHu ‘n+h} - H[4n+p+1|‘n+p} % d{‘n+p+1‘ ‘n+p}‘

But we have the following
Page:12



d( 3 o vy u "Eid{A < pil 1 < 1

h=0 N+h n Lo n+k+1"’ "‘i‘!.-l-h::l 2n+k 2n—1
k=0
5 1
Then, H(,Vodny) = HC 4y) < -

We deduce that {u?u‘u}n is an increasing sequence of

sub-o-algebras which converge to (,V 4 ),

[--]

that B =( VvV 431 € &,
n k=n k 1

and (<) have the same

and that the two sequences (8 i

n’n n
limit.
As {ﬂn} is a decreasing sequence in g, it has a limit
in &
1
We show now that this limit is

B = g ﬂn = l%m sup 4 = (VA

Let EEEJRFI be a partition generating ﬂr wich is finer than
= i
4]

k

{ﬂﬂ*l}kEIm]{thls 1s possible because {ﬂn]n 1s decreasing).

vx € {1, the atom of B which contains x is nothing else that

E B;tf' where B;t"is the element of the partition {Bn} which

kKix)

contains x. (B_") is an increasing seguence and then the

n

sequence {CE ]n converges to CE-
H(B ) = E(Cg ), E({yg) = H(B).

As for each n ﬂn c B, d{ﬂn, B) = H[ﬂn} - H(B) and

d{.‘En , By — 0
n — s=

The density of En in € is easy.

Remarks: 1) if 4, B e El then AvB e 31
ii)if ©® and B’ are any c-algebras and

if € ¢ €’ then E‘{E] < Ei{t']
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I11I-5 REMARKS
1) Differential Entropy.

P is a probability distribution with a step-density
function f with respect to Lebesque measure u; f associated

with the values a 1€N.
The differential entropy is defined by

H(P) = IEch{f}du
and if we note
H(o(f)) = - }: P(f=a )Log P(f=«a )
we have the relation |
H(P) + H(o(f)) = ZP{[za'}Lﬂg mi—?;]

Examples can be built for wich the differential entropy is
infinite (resp. f{inite) and H(o(f)) is finize (resp.

infinite).
Therefore those two notions are different; none of them are the

generalization of the other.

2) Entropy of a seguence of random variables.

The classical definition of the entropy of a

sequence of random wvariables xl, Xz, o T xn, e -
f 1
lim = u:xl, xz, g Hnj
n
where
n
Hlxlf Kzr sw ey an = H{ U15{x|11

| =1
A necessary condition for this limite to be finite is that
Vi, o(X ) € 81, i.e consequently: ¥n H(X . X, , .-, X) is
finite.
n

-]
We proved above that H( 'U'cr{}{i}} = 1im H{ Va(Xx)).
1 =1 n+e i=l

Obviously lim % H{Xl, X AT xn}is a notion which does

n

zf
m

not depend on the c-algebra U’ﬁ(xl}, but depend only on the
i=1

sequence Hi, Xz’ sy XMoo

Li]
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II1I-6 THEOREME:
Given &4 and € any two o-algebras, {AJLEN (resp.

(Ckhﬁw] the set of the atoms of 4 (resp. G) if:

P[{ U Aljcn ( U C;}] # 0, then H(A4AIE) = + =

We define H({#LIE) when A is a finite c-algebra, the

generalization of this notion is easy for an any og-algebra «

by means of limit theorems.

If B = ?a we find the result of the proposition I1I-3:

ek P[{ L hl}c] = 0, then H(AIE) = + w

Proof: In a first time let us prove that wvhen & is = £finite

g—algebra generated by {ﬁlji:

H(IE) = Z H(4IC ).P(C ) where H(IC )= )‘ 5[1’{}“-.’_}(2111]
i

k
this result can be extented tc the case where 4 is an any
c-algebra. These extension 1s obtained by means of limit

theorems.

We have:

P(A_|G).Log(P(A |ﬁ}]l = P(A_|C )-Log[P(a |C)]
¢ .
k
so that

H(A|G) = Z H(4|C) 1.

k k

and

H(418) = ) H(4IC ).P(C )
k
Let us suppose now that:

P[{ Ua)h (U ck]]z 0, then
I

X c
3 ki P[{Uhl} nckn}]xﬂ

The same demonstration for the proposition III-3 but with the
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conditioned by C_ prove that H(4AIC ) = ¢+ «

k ] o
Q

probability P

We deduce that H(AIE) = + =

CONCLUSION

Mutual information between any two random variables can
be defined as mutual information between thelr induced
g-algebras. Then we have a new tool for statistical study of a

qualitative random variables.
Practical applications of this point of vew are

numerous, in particular in biology.
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