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Abstract: In the context of survival analysis, mutual information
theory between o-algebras can be used for selecting qualitative or quan-
titative covariables with a high predictive value. The information rate
carried out by covariables can be tested by means of a decomposition
similar to the analysis of variance. Statistical units with some missing
data are not excluded from the analysis so that a loss of information is
avoided. These results are applied to survival data from 1304 patients
with breast cancer followed over a period of ten years.
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1 Introduction

Let (Q,F, P) be a probability space. The entropy of the probability law P is an interesting tool
for characterising uncertainty associated with P. When {2 is a countable set, the entropy of P
is defined by

H(P)=- ) P(w)n(Pw)) (1)
welY
where ' = {w € Q| P(w) > 0}.

For a random variable X on a countable set (2, the entropy of X denoted by H(X) is
the entropy of the image law Px. If we now consider two random variables X and Y on Q,
conditionally to the event Y = y, the entropy of X denoted by H(X | Y = y) is the entropy of
Py conditional on ¥ = y. The entropy of X conditional on Y is defined as follows :
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HX|Y)= ¥ P =yHX|Y=y) (2)
yeY (Q)
This is the expectation of the random variable which maps H(X | Y =y) to each y.

The notion of entropy seen above cannot be directly extended to non countable sets (see [8]
for the formal link between Shannon entropy (9] and Kullback entropy [4] and their respective
properties). Let p be a measure on (2, the generalized entropy with respect to this reference
measure p ([2],[8]) is defined as :

H(P;p) = — jQ F(@)In(f(w))u(dw)

where f is the Radon-Nikodym derivative of P with respect to p. If P is singular with respect
to p, we set H(P;u) = oo. It is worth noticing that if we consider the generalized entropy of
the approximating discrete distribution P, with respect to the corresponding discrete approx-
imation p, to the reference measure p, then H(P;u) is the limit of the sequence of discrete
approximations H(Py; jin).

In what follows, we refer to the same measured probability space (€2, F, i, P). We consider
sub-g-algebras of F generated by random variables. Let A be such a o-algebra and X the
random variable generating A, we define the entropy of A denoted by H(.A) as follows : H(A) =

H(Px;px).

2 Information between o-algebras

Let A and B be two o-algebras. We denote by AV B = (AU B) the o-algebra generated by
AUB.

Definition 1 Consider two o-algebras A and B. the entropy of A conditionally to B is defined

as follows :
H(A|B)=H(AVB) - H(B). (3)

This entropy represents the uncertainty on .4 when B is known.
We have the following properties :

Property 1
1. AC B= H(A) < H(B).
2. HHAAVB)<H(A)+ H(B) and H(A|B)<H(A).

3. If A and B have finite entropies, then :
H(AVB)=H(A)+ H(B) and H(A|B)=H(A) if and only if
A and B are independant. We then write ALB.
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For a correct quantification I(.A, B) of the information between c-algebras A and B, some
postulates are required concerning necessary properties verified by I(.A, B) :

L ALE & I{AB) =0,
2. I(A,B)=1(B,A),
3. AcC= I(A,B) <I(C,B), C being a o-algebra.

Choosing I(A, B) as follows, all these postulates are verified :

Definition 2
I(A,B)=H(A)+ H(B)-H(AV B), (4)

Moreover,

I(A,A) = H(A). (5)

Following the definition of mutual information between two o-algebras A and B given by
(4), we define the mutual information between .4 and B conditional on o-algebra C by :

Definition 3

IAB|C)=H(A|C)+H(B|C)-H(AVB|C). (6)
We will now show how the entropy of a g-algebra A can be decomposed by means of the
mutual information between A and n other g-algebras, say By, ..., B,.

Theorem 1 Let A, By and By be 3 o-algebras, then

I(A, By V By) = I(A, By) + I(A, Ba) + I(By, Bz | A) — I(B1,B2) (7)

Proof

Let us calculate Z = I(A, B,V By) — (I(A,By) + I(A, By) + I(By1,B; | A) - I(B1,By)).

By using expressions (3), (4) and (6), it is straightforward that Z = 0, which leads us to the fi-
nal result. .

We see that the mutual information between A and B; V Bs is the sum of the mutual
informations I(.A, B; and I(A, B; if and only if the mutual information between B; and B, does
not depend on A.

Theorem 2 Let A, By, ..., B, be o-algebras, the entropy of A can be decomposed as follows :

n n

i—1 i—1 n
H(A) =Y I(AB) + > (I(\/ B, Bi | A) - I(\/ B, B)) + H(A| \/ By). (8)
=1 =1

i=] i=2 7 7 i=1



proof

We can prove this proposition by recurrence on n. From expressions (3) and (4), we derive
H(A) =1I(A,B,) + H(A| B1) (9)

so that equality (8) is true for n = 1.

If we denote \/ B; by F, for any non null integer n, then we have

i=1
H(A) = I(A, Fas1) + H(A| Fas) (10)
From (7), we obtain
I(A, Fas1) = I(A, Fn) + I(A, Bay1) + I(Fn, Basa | A) — I(Fn, Bns1)-
These two last equations give us the decomposition of H(.A) with respect to By, ..., By+1. .

When we have no reasonable parametric models with respect to the observed phenomena
(variable of interest ¥ and k covariables X1, ..., X}), a non parametric approach is possible from
the information provided by contingency tables associated with the observations in a similar way
as the one used by [5] et [6]. A maximum information principle with respect to a reference o-
algebra associated with the variable of interest Y is applied here.

3 Method of covariable selection

We use a method based on the estimation of the conditional and non conditional entropies of Y’
and covariables X1,..., X. The estimates are calculated by means of the empirical frequencies
provided by the multidimensional contingency tables. For covariables having a continuous distri-
bution, we then assume that the outcomes have been grouped into mutually exclusive intervals
whose union contains the support of the random variable.

3.1 Preparing of contingency tables

To diminish low frequency occurrences in the contingency table, some covariable modalities can
be grouped by means of a maximum entropy principle described below.

On the maximum entropy principle Let () be a set of m elements. The probability
distribution on ) with the highest entropy is the uniform distribution whose entropy is equal to

In(m).



The maximum entropy principle can be applied to a quantitative or ordered qualitative
variable Z. It consists in reducing the initial number of modalities to a value k by grouping &
classes of consecutive modalities such that their frequencies are almost equal.

For example, a variable Z with 10 modalities whose frequencies are given in tablel can have
its modalities reduced to 3 as follows using the maximum entropy principle :

Initial modality || Z, | Z2 | Z3 || Z4 | Z5 | Zs || Z7 | Zs | Zo | Z10
Frequency 311610 7 (19| 8 |11|5 | 1|14

New modality VA Zh Z3

New frequency 29 34 31

Table 1: Ezample of modality grouping with the mazimum entropy principle

3.2 Information carried by a covariable

Let Y be the variable of interest, X, any covariable, (n;;) the contingency table associated with
Y and X, and p = (p;;) the matrix of expected relative frequencies.
The first step of the method of selection consists of quantifying the relationship between
X and Y. Following this aim, we use a correlation coefficient based on the Shannon entropy
defined as follows:
Definition 4 The expression of the relative information of X on'Y is
X, ¥)

Using expressions (3) and (4), we get :

HY)-HY | X)

L(X,Y)= 5

€ [0,1]. (12)

I.(X,Y) can be seen as the percentage of uncertainty on Y conditionally to X.

The observation of X and Y through a contingency table leads to the following property which
is a consequence of equalities (??7) and (12):

Property 2 An expression of the relative information of X on'Y is:

cih Pij
I (X Y) — %pa} n(Pi.P.J')
o Y p;ln(p;)
3

(13)



We then deduce the following property:
Property 3 An estimator of the relative information of X onY is:

T=L(XY)= e (14)

where Py, p;. and p; are classical notations used for the empirical relative frequencies.
This estimator is convergent and follows asymptotically the gaussian distribution N ( +(X,Y),var(T ))
where var(T) is the asymptotic variance of T. Its expression is

aI,(X, Y)

var(T (Z 3P u) (15)

]

where n = Zn,-j is the number of statistical units considered, and the II;; are the indicator
1,

functions associated with the contingency table of (n;).

Using equalities (13) and (15), we get the following property:

Property 4 An expression of the asymptotic variance of estimator T is:

var{T) = : {Hz ZPU [ n( p; + Tln(pj)] 2} . (16)

var(T) can be estimated by var(T) which is obtained by replacing p;j, p;. and p j by their empirical
estimations p;j, p;, and p ;.
3.3 Information carried by several covariables

As in the previous paragraph, we can measure the combined relative information of several co-
variables X, ..., X on Y. The valuation of the information variance permits to build confidence
intervals and eliminates the less pertinent covariables.

Vocabulary: When Y is the survival variable, I.(X,Y) is called pronostic value of X and
denoted by I,.(X).
3.4 Practical method of selection

We select progressively the different covariables using an iterative process.
Let E be the set of covariables X,..., X} considered in the study.



The first step consists of building the set E; defined by
E = {X; €E [ L(Xi,Y)+ua var ([(X1,Y)) > p1}

and at a step h (h > 2), we get

Eh={(X¢,:v)eEth_1 / f,((X;,m),Y)+ua‘/\7§?(ﬂ((Xg,.r),Y)) zph}

where p;, pr and « are thresholds fixed by the user, and u, is such that ®(u,) =1— %, ® being
the distribution function of the gaussian distribution N(0,1).

Remarks

1. The thresholds series (pp)nen+ must be a strictly increasing sequence
because the adding of a covariable necessarily increases the relative

information.

2. The selection process described above is interesting since at any given
step h, a covariable which hasn’t been selected at a previous step can
be included in the selection set E},.

In practice, the stopping criteria are the following:

i) a maximum number of iterations is determined by the user,

i1) the user determined a maximum threshold beyond which he considers
that the relative information is sufficient,

iii) any combination of i) and ii),

iv) no covariables can be added.

4 Hierarchisation of a covariable modality

In the case where Y is the survival variable, the quotient of the number of patients alive at
time ¢ by the number of uncensored patients just before time ¢ is called survival rate at time ¢.
The survival curve is the curve of the survival rates as a function of ¢. The recovery rate of a
sub-population is the survival rate at the end of the experimentation.



The different modalities of a covariable gives a partitionning of the patient population (cf. ez-
amples presented in fig. 3 and ). These modalities are ordered in function of their recovery
rates.

If the survival curves of two modalities are very close, they should be grouped in a single
modality.

5 Application to the breast cancer

5.1 The data

The data come from an investigation realised in Marseille by Professor J.-M. SPITALIER and
the Doctor D. HANS: 1304 patients were observed during 10 years. 45 quantitative or qualitative
variables have been observed on each patient. A treatment was applied to the different patients
according to the values of the variables.

15 out of 45 variables were retained after a preliminary data analysis: 1-age, 2-clinic class,
3-thermographic class, 4-senographic class, 5-echographic class, 6-clinic PEV, 7-clinic diameter,
8-clinic behaviour, 9-side, 10-histology, 11-N histology, 12-number of invading ganglions, 13-
ceustradiol receivers, 14-progesterone receivers, 15-UICC stage.

5.2 Selection of the covariables

Computations were made using programs written in APL or Turbo Pascal. The first step allowed
to select 5 covariables which were: the thermographic class, the number of invading ganglions,
the histology, the N histology and the UICC stage using the following thresholds: p; = 5% and
a = 5% (Cf Fig. 1).

The second step confirmed the choice with the following thresholds: ps = 15% and a = 5%
(cf. Fig. 2). Nevertheless, at the third step, the best combination of 3 covariables was the age,
the histology and the number of invading ganglions: this combination gave about 40% of relative
information relative to the death.

5.3 Hierarchisation of the modality of a covariable

If a covariable has a correct pronostic value, it is interesting to be able to assign a survival curve
to the different possible values of this covariable (¢f. Fig. 3 and 4). These curves represent the
survival rate conditional to the value taken by this covariable on a patient. They are useful tools
for medical pronostics.

The studies which were undertaken separately of the 4 covariables age, histology, number
of invading ganglions and UICC stage indicates the modalities which have the best survival



expectation. So, for the covariable number of invading ganglions (cf. Fig. 3), 0, 1 or 2 invading
ganglions give survival curves that are near and above the average survival whereas the modality
"3 to 4 invading ganglions” is clearly less than average. The modality "more than 4 invading
ganglions” is the worst.

If the covariable age is taken individually, it carries little information on the survival variable:
this is shown by the entwining of the survival curves associated with its modalities (cf. Fig. 4).

6 Conclusions

We have presented an asymptotic method which can be applied when the number of statistical
units is large. Using this method, some covariables carrying most of the information on the
variable of interest can be selected. When applied to patients having breast cancer, four variables
were selected. The plotted survival curves for each modality of a covariable gave more precise
information on the pronostic values.
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