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Abstract

We present an entropy conservation principle applicable to either discrete or continuous
variables which provides a useful tool for aggregating observations. The associated
method of modality grouping transforms a variable Z1 into a new variable Z2 such that
the mutual information I (Z2, Y ) between Y , a variable of interest, and Z2 is equal to
I (Z1, Y ).
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1. Introduction

Entropy-based methods are often used in different fields (see [2, 5, 8]) in order to take
into account information carried simultaneously by several variables. Since the pioneer work
presented by Shannon [9], many authors have studied the relationship between measures of
entropy and statistical analyses (see for example [3, 5, 6, 7]). For example, Ebrahimi and
Pellerey proposed in [1] a partial ordering of survival functions based on the differential
entropy of residual lifetime distributions.

In a recent paper, Manuceau et al. [4] have presented an entropy-based method for analysing
the influence of covariables on breast cancer survival time. In applying this procedure, it is
often necessary to reduce the initial number of modalities to a value k by grouping k classes
of consecutive modalities. One possibility is to use a maximum entropy principle so that these
class frequencies are almost equal.

A more satisfactory method of modality grouping which provides a transformation of a
variable Z into a modified variable Z ′ would be one which conserves the mutual information
between Y and Z , say I (Z , Y ) = I (Z ′, Y ), where Y is a variable of interest and I (·, ·) defined
as below. This is the aim of the next paragraph.

Definition. Let (�, F , P) be a probability space. Let X and Y be two random variables taking
values on the measure spaces (E1, B, ν) and (E2, A, µ) respectively. If:

(i) X (respectively Y ) has a Radon–Nikodym derivative g (respectively f ) with respect to
ν (respectively µ),

(ii) for any x in E1, Y conditionally to X = x has a Radon–Nikodym derivative fx with
respect to µ
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then the mutual information between X and Y is

I (X, Y ) = H (Y ) − H (Y | X)

where

H (Y ) = −
∫

E2

f (y) ln( f (y))µ(d y)

is the differential entropy of Y and

H (Y | X) = −
∫

E1

g(x)

∫
E2

fx (y) ln( fx (y))µ(dy)ν(dx)

is the differential entropy of Y conditional on X .

2. Entropy conservation principle

In this section, we give an entropy conservation result useful for data grouping. The
associated method transforms a covariable X into a new covariable X ′ such that the differential
entropy H (Y | X ′) of Y conditional on X ′ equals H (Y | X). The proposition presented is
different from the information invariance proposition given by [3] for which X and Y have the
same value set and are modified by the same transformation T . Let us consider the following
lemma.

Lemma. Let (�, F , P) be a probability space. Let X be a random variable taking values on
the measure space (E, B, ν). Let K ∈ B and α ∈ E . We denote by PX the probability on E
generated by X. Let X ′ be the random variable defined by

∀ω ∈ �, X ′(ω) = X (w)1X−1(E\K )(ω) + α1X−1(K )(ω). (1)

If PX � ν, α ∈ K and ν({α}) �= 0, then PX ′ � ν.
The Radon–Nikodym derivative of PX ′ with respect to ν is then

∂ PX ′

∂ν
= ∂ PX

∂ν
1E\K + PX (K )

ν({α}) 1{α}.

The following proposition provides a mutual information conservation principle:

Proposition. Let (�, F , P) be a probability space. Let X and Y be two random variables
taking values on the measure spaces (E1, B, ν) and (E2, A, µ) respectively. We assume that
X has a Radon-Nikodym derivative g with respect to ν. For any x in E1, we also assume that

Y conditionally to X = x

has a Radon-Nikodym derivative fx with respect to µ. Let K be a non-empty set of B. Then

∀(x1, x2) ∈ K 2, fx1 = fx2 �⇒ I (X, Y ) = I (X ′, Y )

where X ′ is a modification of X defined by:

X ′ =
{

X on X−1(E1\K )

α on X−1(K )

where α is an element of K such that ν({α}) �= 0.
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Proof. To show that I (X, Y ) = I (X ′, Y ), we can simply show that H (Y | X) = H (Y | X ′)
since I (X, Y ) = H (Y ) − H (Y | X).

H (Y | X) = −
∫

E1

g(x)

∫
E2

fx (y) ln( fx (y))µ(dy)ν(dx)

= −
∫

E1\K
g(x)

∫
E2

fx (y) ln( fx (y))µ(dy)ν(dx)

−
∫

K
g(x)

∫
E2

fx (y) ln( fx (y))µ(dy)ν(dx).

Since fx (y) does not depend on x for x in K , we have

H (Y | X) = −
∫

E1\K
g(x)

∫
E2

fx (y) ln( fx (y))µ(dy)ν(dx)

−
∫

K
g(x)ν(dx)

∫
E2

fx (y) ln( fx (y))µ(dy) (2)

and the last term of the right member of (2) is equal to

−PX (K )

∫
E2

fK (y) ln( fK (y))µ(dy)

where fK stands for the single function fx when x ∈ K .
Consequently, H (Y | X) = H (Y | X ′) where X ′ is a random variable whose Radon–

Nikodym derivative h with respect to ν is such that

h(x) = g(x)1E1\K (x) + PX (K )

ν({α}) 1{α}(x) ∀x ∈ E1.

From the above lemma, we know this is the case when X ′ equals X on X−1(E1\K ), and is
constant on X−1(K ).

It is worth noticing that the different modifications X ′ of X generate the same sigma-algebra
on E1.

Let us consider the following survival time example: Y is the survival time. X is a discrete
covariable taking value in E1 influencing Y . For any modality x ∈ E1 of this covariable, fx is
the conditional probability density of Y associated with the survival curve conditional on x . If
we have fx1 = fx2 for (x1, x2) in E2

1 , then these two modalities x1 and x2 can be grouped into
a single modality since the two conditional survival curves are identical. Several groupings
can be made in this way, which decreases the number of significant curves without modifying
the mutual information between the survival time and the covariable. More precisely, let us set

E1 = [−n, n] ∩Z∗ and fx (t) = λ(x) e−λ(x)t , ∀t ∈R+

where n ∈ N∗ and λ is a positive and even real function of x .
Then ∀x ∈ E1, fx = f−x , which implies that X ′ = |X | is a modification of X such that

I (X, Y ) = I (X ′, Y ).
From X to X ′, the number of modalities of the covariable is divided by two.
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3. Conclusions

The entropy conservation principle presented in this paper proves that aggregating observa-
tions or grouping modalities of a covariable is possible without losing information carried by
this covariable on the variable of interest. One of the numerous possible applications of this
principle is the aggregation of survival curves and the test of significant difference between
them. Applying this method could minimize the number of relevant curves associated to
different prognostic covariables.
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[7] RÉNYI, A. (1961). On measures of entropy and information. In Proc. 4th Berkeley Symposium on Mathematical

Statistics and Probability, Vol. 1. University of California Press, Berkeley, CA, pp. 547–561.
[8] ROBERT, C. (1990). An entropy concentration theorem: applications in artificial intelligence and descriptive

statistics. J. Appl. Prob. 27, 303–313.
[9] SHANNON, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal 27, 379–423

& 623–656.


