APPROXIMATION D'UNE PROBABILITE SUR UN ESPACE DE HILBERT ET ANALYSE EN COMPOSANTES PRINCIPALES

Alain ARCONTE-Jérôme MANUCEAU-Claude MARTIAS

Université des Antilles et de la Guyane U.F.R. Sciences Exactes et Naturelles Département de mathématiques B.P. 592 97167 Pointe-à-Pitre. GUADELOUPE Résumé.

Soit \mathcal{H} un espace de Hilbert réel, séparable et Q une probabilité sur $(\mathcal{H}, \mathcal{B}(\mathcal{H}))$, de variance finie. On montre qu'il existe une suite croissante de sous espaces vectoriels de dimensions finies $(V_n)_{n\in\mathbb{N}}$, tels que les probabilités marginales correspondantes \tilde{Q}_{V_n} soient des approximations de Q sur V_n et que la suite $(\tilde{Q}_{V_n})_{n\in\mathbb{N}}$ converge étroitement vers Q. On montre enfin que l'Analyse en Composantes Principales est un cas particulier, du problème traité.

1 Introduction.

Dans l'étude d'une probabilité sur un espace de Hilbert il est parfois utile d'en rechercher une approximation ou une suite d'approximations. Il est naturel de chercher à construire cette dernière à l'aide de probabilités marginales sur des sous-espaces vectoriels de dimension finie.

Les techniques utilisées par l'Analyse en Composantes Principales sont très générales et connues depuis longtemps sous par exemple la dénomination de "décomposition de Kanhunen - Loeve [6]."

Elles ont été développées dans des domaines divers (en particulier dans la théorie du signal) par de très nombreux auteurs : S. CILIBERTO et B. NICOLAENKO [4], N. AUBRY, R. GUYONNET et R. LIMA [1][2], M.KIRBY et D. ARMBRUSTER [7], C. PARDOUX [8], J.D. RODRIGUEZ et L. SIROVICH [9].

La généralisation de l'Analyse en Composantes Principales à un espace de Hilbert réel, séparable donne une dimension nouvelle à cette théorie classiquement considérée comme une méthode statistique descriptive ; dans ce cadre plus large, elle apparaît comme une méthode d'approximation d'une probabilité. Elle peut donc être considérée comme faisant partie de la statistique inférentielle.

2 Approximation d'une probabilité.

Soit \mathcal{H} un espace de Hilbert réel, séparable, $\mathcal{B}(\mathcal{H})$ la tribu borelienne associée et Q une probabilité sur $(\mathcal{H}, \mathcal{B}(\mathcal{H}))$. On suppose que sa moyenne

 $\mu = E_Q(X)$ existe $(\in \mathcal{H})$, ainsi que sa variance

$$var(Q) = \int_{\mathcal{H}} \|x - \mu\|^2 dQ(x) < +\infty.$$

Cela implique que sa covariance

$$\Gamma = cov(Q) = \int_{\mathcal{H}} (x - \mu) \otimes (x - \mu) dQ(x)$$

est un opérateur nucléaire de $\mathcal{L}(\mathcal{H})$ et que

$$var(Q) = Tr(cov(Q)).$$

Proposition 2.1 Soit $(Q_n)_n$ une suite de probabilités sur $(\mathcal{H}, \mathcal{B}(\mathcal{H}))$ ayant la même moyenne μ . Alors,

$$(var(Q_n) \xrightarrow{n} 0) \Longrightarrow (Q_n \Longrightarrow_n \delta_\mu)$$

où δ_{μ} est la mesure de Dirac en μ .

Démonstration : $\forall \rho > 0$,

$$var(Q_n) \ge \int_{B(\mu,\rho)^c} ||x - \mu||^2 dQ_n(x) \ge \rho^2 Q_n(B(\mu,\rho)^c).$$

Si f est une fonction continue bornée de \mathcal{H} dans \mathbb{R} ,

$$E_{Q_n}(|f - f(\mu)|) = \int_{B(\mu,\rho)} |f - f(\mu)| dQ_n + \int_{B(\mu,\rho)^c} |f - f(\mu)| dQ_n.$$

En choisissant ρ tel que $|f - f(\mu)| < \varepsilon$ sur $B(\mu, \rho)$, alors,

$$E_{Q_n}(|f - f(\mu)|) \le \varepsilon + \frac{2||f||}{\rho^2} var(Q_n)$$
 \diamondsuit

Remarque : La réciproque est fausse. Pour le voir, il suffit de prendre dans $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ la suite des probabilités

$$P_n = \left(1 - \frac{1}{2n^2}\right)\delta_0 + \frac{1}{2n^2}(\delta_{-n} + \delta_{+n})$$

Evidemment $var(P_n) = 1$ et $P_n \Longrightarrow \delta_0$.

Soit V un sous espace vectoriel fermé de \mathcal{H} . On sait que \mathcal{H} est isomorphe à $V \times V^{\perp}$ et que $\mathcal{B}(\mathcal{H}) = \mathcal{B}(V) \otimes \mathcal{B}(V^{\perp})$. Soit P_V le projecteur orthogonal sur V et posons

$$Q_V = Q \circ P_V^{-1}$$
.

 Q_V est une probabilité sur $(V, \mathcal{B}(V))$ et

$$\forall A \in \mathcal{B}(V), Q_V(A) = Q(A \times V^{\perp}).$$

 Q_V est donc la probabilité marginale de Q sur V et on voit aisément que

$$varQ = varQ_V + varQ_{V^{\perp}}$$

et que

 $suppQ_V = P_V(suppQ).$

Grâce à la Proposition 2.1, on peut s'attendre à ce que la probabilité $Q_V \otimes \delta_{P_{V^{\perp}}(\mu)}$ soit une "approximation" de Q, d'autant "meilleure" que $varQ_{V^{\perp}}$ est plus petite. La qualité de cette approximation pourra être appréciée par $var(Q_V)$

le rapport $\alpha_V = \frac{var(Q_V)}{var(Q)}$ qui appartient à [0,1] et vérifie

 $\alpha_V = 0 \iff Q = \delta_{P_V(\mu)} \otimes Q_{V^{\perp}} \text{ et } \alpha_V = 1 \iff Q = Q_V \otimes \delta_{P_{V^{\perp}(\mu)}}.$

Nous allons préciser cette notion d'approximation, dans les propositions 2.2 et 2.3.

Dans tout ce qui va suivre, nous allons noter $(e_i)_{i\in\mathbb{N}^*}$ une base orthonormale de \mathcal{H} qui diagonalise Γ et $(\lambda_i)_{i\in\mathbb{N}^*}$ la suite des valeurs propres corres pondantes. On peut supposer que $\forall i\in\mathbb{N}^*, \lambda_i>0$. En effet, si $ker\Gamma\neq\{0\}$, en posant $V=(ker\Gamma)^{\perp}$, on peut voir que

$$supp(Q) \subset V \times \{P_{V^{\perp}}(\mu)\}$$

et que

 $Q = Q_V \otimes \delta_{P_{V^{\perp}}(\mu)}.$

En outre, nous choisissons l'indéxation de la base de façon à ce que la suite des valeurs propres soit décroissante.

Evidemment $(\lambda_i)_i \in \ell^1_{\mathbb{R}}, \{\lambda_i | i \in \mathbb{N}^*\} \subset [0, ||\Gamma||] \text{ et } \lambda_1 = ||\Gamma||.$

Proposition 2.2

$$\forall n \in \mathbb{N}^*, \ si \ V_n = [\{e_1, \dots, e_n\}],$$

alors,

$$var(Q_{V_n}) = \sup_{dimV=n} var(Q_V).$$

Démonstration : raisonnons par récurrence.

1)n = 1. Soit e un vecteur unitaire de \mathcal{H} . Alors $varQ_{[e]} = \langle e|cov(Q)e \rangle$. Evidemment, ce nombre est maximum lorsque e est un vecteur propre de covQ, correspondant à la plus grande valeur propre.

2) Supposons la propriété vraie pour n et démontrons la pour n+1. Soit V un sous espace vectoriel de \mathcal{H} de dimension n+1. Montrons que

$$varQ_V \leq varQ_{V_{n+1}}$$
.

Puisque la codimension de V_n^{\perp} est n, alors, $V_n^{\perp} \cap V \neq \{0\}$; soit x un élément unitaire de cet ensemble et $W = [x]^{\perp} \cap V$. Par hypothèse $varQ_W \leq varQ_{V_n}$ et puisque covQ laisse invariant $V_n^{\perp}, varQ_{[x]} \leq varQ_{[e_{n+1}]}$. D'où

$$varQ_V = varQ_W + varQ_{[x]} \le varQ_{V_{n+1}}$$
 \diamond

Les V_n ne sont uniques que si les valeurs propres de covQ sont de multiplicité 1. V_n s'appelle, espace principal de Q de dimension n.

Corollaire 2.1 Toute probabilité gaussienne $Q = N(\mu, \Gamma)$ sur $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$, peut s'écrire,

$$Q = \bigotimes_{i=1}^{n} Q_{[e_i]}$$

où e_1, \ldots, e_n est une base orthonormale qui diagonalise Γ , dont les valeurs propres sont $\lambda_1, \ldots, \lambda_n$. Si $\lambda_i \neq 0$, $Q_{[e_i]} = N(P_{[e_i]}(\mu), \lambda_i)$ et si $\lambda_i = 0$, $Q_{[e_i]} = \delta_{P_{[e_i]}}(\mu)$.

 \mathcal{H} étant séparable, la base $(e_i)_{i \in \mathbb{N}^*}$ définit un isomorphisme de \mathcal{H} sur ℓ_R^2 . Comme $\ell_R^2 = \mathbb{R}^n \times \ell_R^2$, $\forall n \in \mathbb{N}^*$, on a

$$\mathcal{B}(\ell_{I\!\!R}^2) = \mathcal{B}(I\!\!R^n) \otimes \mathcal{B}(\ell_{I\!\!R}^2).$$

Posons

$$\widetilde{Q}_{V_n} = Q_{V_n} \otimes \delta_{P_{V_n^{\perp}}(\mu)}.$$

Evidemment

$$var\tilde{Q}_{V_n} = \sum_{i=1}^n \lambda_i \rightarrow var(Q) = \sum_{i=1}^\infty \lambda_i.$$

Proposition 2.3

$$\tilde{Q}_{V_n} \Longrightarrow Q$$
.

Démonstration : $\forall x \in \mathcal{H}$, soit $(x_i)_{i \in \mathbb{N}^*}$ la suite des coordonnées de x dans la base $(e_i)_{i \in \mathbb{N}^*}$ et $(\mu_i)_{i \in \mathbb{N}^*}$ celle de μ . Si f est une fonction continue bornée de $\ell^2_{\mathbb{R}}$ dans \mathbb{R} , alors,

$$E_{Q_n}(f) = \int_{\mathbb{R}^n} f(x_1, \dots, x_n, \mu_{n+1}, \dots) dQ_{V_n}(x_1, \dots, x_n)$$

$$= \int_{\ell^2} f(x_1, \dots, x_n, \mu_{n+1}, \dots) dQ(x_1, \dots)$$

$$= \int_{\ell^2} \varphi_n dQ$$

où $\varphi_n((x_i)_{i\in\mathbb{N}^*}) = f(x_1, ..., x_n, \mu_{n+1}, ...).$

On conclut avec le théorème de la convergence dominée

Dans la proposition 2.3, nous aurions pu remplacer $(V_n)_n$ par une suite quelconque de sous espaces vectoriels de dimensions finies de \mathcal{H} , croissante, dont l'union est dense dans \mathcal{H} . Le choix des espaces principaux a un double intérêt. D'une part nous connaissons pour tout n $var(\tilde{Q}_{V_n})$ et d'autre part cette suite, d'après la proposition 2.2 est celle qui converge le plus vite vers var(Q).

Remarque: Supposons pour simplifier les notations que $\mu = 0$. \tilde{Q}_{V_n} est une approximation de Q sur $V_n \times \{0\}$ car

i)
$$supp(\tilde{Q}_{V_n}) \subset V \times \{0\}$$

ii)
$$\forall A \in \mathcal{B}(V) \quad \tilde{Q}_{V_n}(A \times \{0\}) = Q(A \times V_n^{\perp})$$

d'où
$$0 \le \tilde{Q}_{V_n}(A \times \{0\}) - Q(A \times \{0\}) = \le Q(\{0\} \times (V_n^{\perp} - \{0\})) \le \int_{B(0,\rho)-\{0\}} dQ + \int_{(\{0\} \times V_n^{\perp}) \cap B(0,\rho)} e^{\frac{\|x\|^2}{\rho^2} dQ(x)} \le 1$$

$$Q(B(0,\rho) - \{0\}) + \frac{1}{\rho^2} var(\tilde{Q}_{V_n^{\perp}})$$

Chaque terme de cette dernière somme pouvant être choisi inférieur ou égal à $\frac{\epsilon}{2}$; le premier en prenant ρ suffisamment petit et le deuxième en prenant n suffisamment grand.

En outre si dim[supp(Q)] = k alors V_k qui est l'espace principal de dimension k est le seul sous-espace de dimension k qui vérifie $\tilde{Q}_{V_k} = Q$.

Posons $C_n = \mathcal{B}(\mathbb{R}^n) \times \ell^2 \subset \mathcal{B}(\ell^2), C = \bigcup_{n \in \mathbb{N}^*} C_n$ et $\mathcal{B}^{\infty} = \sigma(C)$. Si Q est une gaussienne dans $(\mathcal{H}, \mathcal{B}(\mathcal{H}))$, d'après le corollaire 2.1 : $\forall n \in \mathbb{N}^*, Q_n = \left(\bigotimes_{i=1}^n Q_{[e_i]} \right) \otimes \delta_{P_{V_n^{\perp}}(\mu)}$. Evidemment $Q = Q_n$ sur C_n . On peut alors noter $\bigotimes_{i=1}^{\infty} Q_{[e_i]}$ la restriction de Q à C.

Lemme 2.1

$$\mathcal{B}^{\infty} = \mathcal{B}(\ell_2).$$

Démonstration : il est clair que $\mathcal{B}^{\infty} \subset \mathcal{B}(\ell_2) = \mathcal{B}(\mathbb{R}^n) \otimes \mathcal{B}(\ell^2)$. Pour démontrer l'inclusion inverse, nous allons montrer que $\mathcal{B}(0,1) \in \mathcal{B}^{\infty}$; plus précisément, nous montrerons que $\mathcal{B}(0,1)$ peut-être recouvert par un ensemble dénombrable d'éléments de \mathcal{B}^{∞} .

Soit $(I_i)_{i\in N}$ une suite d'intervalles $I_i =]z_i - \rho_i, z_i + \rho_i[$, formant une base pour l'ensemble des ouverts de]-1,1[. L'ensemble $\mathcal D$ des éléments de la forme $\prod_{n\in N^*} I_{i_n}$ où $\sum_{n=1}^{\infty} \rho_{i_n}^2 \le 1 - \sum_{i=1}^{\infty} z_{i_n}^2$ est un sous ensemble dénombrable de $\mathcal B^\infty$ dont les éléments sont inclus dans B(0,1).

$$\forall x=(x_i)_{i\in\mathbb{N}^*}\in B(0,1) \text{ et } \forall n\in\mathbb{N}^*, \exists I_{i_n}$$
 tel que
$$x_n\in I_{i_n}\subset]x_n-\frac{1-|x_n|}{2^{n+1}}, x_n+\frac{1-|x_n|}{2^{n+1}}[.$$
 On voit alors que $x\in\prod_{n=1}^\infty I_{i_n}\in\mathcal{D}.$

Corollaire 2.2 Pour toute gaussienne Q de $(\mathcal{H},\mathcal{B}(\mathcal{H}))$, on a

$$Q = \bigotimes_{i=1}^{\infty} Q_{[e_i]}$$

 $o\grave{u}\ Q_{[e_i]}=N(P_{[e_i]}(\mu),\lambda_i)\ si\ \lambda_i\neq 0\ et\ Q_{[e_i]}=\delta_{P_{[e_i]}(\mu)}\ si\ \lambda_i=0.$

3 Analyse en Composantes Principales.

Soit (Ω, \mathcal{F}, R) un espace probabilisé, \mathcal{H} un espace de Hilbert réel séparable et X une variable aléatoire de (Ω, \mathcal{F}) dans $(\mathcal{H}, \mathcal{B}(\mathcal{H}))$ de norme au carré intégrable. Définissons \tilde{X} appliquant $L^2_{\mathbf{R}}(\Omega, \mathcal{F}, R)$ dans \mathcal{H} par

$$\tilde{X}(f) = \int_{\Omega} X(\omega) f(\omega) dR(\omega).$$

On voit que

$$\forall u \in \mathcal{H}, \forall \omega \in \Omega, \tilde{X}^*(u)(\omega) = \langle X(\omega)|u \rangle$$

et que $\tilde{X} \circ \tilde{X}^* = cov R_X$.

Définition: On appelle Analyse en Composantes principales de X la recherche d'une base orthonormale $(e_i)_{i\in N^*}$ de \mathcal{H} diagonalisant $covR_X$ et rangée par ordre décroissant de leurs valeurs propres correspondantes. Les e_i s'appellent vecteurs principaux et les $\varepsilon_i = \frac{1}{\sqrt{\lambda_i}}\tilde{X}^*(e_i)$ qui sont des vecteurs propres de \tilde{X}^* o \tilde{X} avec les mêmes valeurs propres, composantes principales.

L'avantage de cette définition sur celle proposée dans [5] est que c'est la plus simple possible généralisant la théorie classique de l'A.C.P. où $\Omega = \{x_1, \ldots, x_n\}$ et $R = \sum_{i=1}^n p_i \delta_{x_i}(p_i > 0, \sum_i p_i = 1)$ [3].

Notons $\sigma(X)=X^{-1}(\mathcal{B}(\mathcal{H}))\subset\mathcal{F}$ et $R_X=Q$. Avec les notations cidessus, on a

Proposition 3.1 \tilde{X} (resp. \tilde{X}^*) est une injection continue de $L^2_{\mathbf{R}}(\Omega, \sigma(X), R)$ dans \mathcal{H} (resp. de \mathcal{H} dans $L^2_{\mathbf{R}}(\Omega, \sigma(X), R)$), telle que

$$\forall i \in \mathbb{N}^*, \tilde{X}(\varepsilon_i) = \sqrt{\lambda_i} e_i$$

$$\tilde{X}^*(e_i) = \sqrt{\lambda_i} \varepsilon_i$$

En outre $(\varepsilon_i)_{i\in\mathbb{N}^*}$ est une base orthonormale de $L^2(\Omega, \sigma(X), R)$ et $\forall n \in \mathbb{N}^*, (\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n), R_{(\sqrt{\lambda_1}\varepsilon_1, \dots, \sqrt{\lambda_n}\varepsilon_n))}$ est égal à un isomorphisme près à $(V_n, \mathcal{B}(V_n), Q_{V_n})$.

Démonstration :
$$P_{V_n}(X) = \sum_{i=1}^n \langle X|e_i \rangle e_i = \sum_{i=1}^n \sqrt{\lambda_i} \varepsilon_i e_i$$
 et $Q_{V_n} = Q \circ P_{V_n}^{-1} = R \circ P_{V_n}(X)^{-1} = R_{\sum_{i=1}^n \sqrt{\lambda_i} \varepsilon_i e_i} \diamondsuit$

Ainsi, les n premiers facteurs principaux $\varepsilon_1, \ldots, \varepsilon_n$, permettent de reconstruire Q_n , approximation de R_X . On comprend tout l'intérêt de ces derniers en inférence statistique.

4 Conclusion.

L'Analyse en Composantes Principales est habituellement présentée, comme une méthode descriptive de l'étude d'un système statistique [3] ce qui a un intérêt limité. On voit avec la proposition 3.1, qu'elle peut-être aussi considérée comme une méthode d'approximation d'une probabilité inconnue, à laquelle nous avons accès que par l'intermédiaire de l'observation expérimentale de variables aléatoires.

Elle fait donc partie intégrante de la statistique inférentielle.

Références

- [1] N. Aubry, R. Guyonnet, R. Lima: Spatio-temporel analysis of complex signals: théorie and applications. J. Stat. Phys. 63, 3 (1991).
- [2] N. Aubry, R. Guyonnet, R. Lima: On the turbulence spectra (in preparation).
- [3] F. Cailliez et J.P. Pages: Introduction à l'analyse des données. S.M.A.C.H. (1976).
- [4] S. Cilibento and B. Nicolaenko: Europhys. Le H 14(4) 303.
- [5] J. Dauxois et A. Pousse: Analyses factorielles en calcul des probabilités et en statistique. Thèse. Université Paul Sabatier. Toulouse 1976.
- [6] K. Kanhuren: zw Apektral theorie stochatische prozesse. Ann. Acad. Sci. Fernicae Ser. A.1 (1944) 34
- [7] M. Kirby and D. Armbryster: Reconstructing phase foce for P.D.E. simulations Preprint (1991).
- [8] C. Pardoux : Apport de l'analyse factorielle à l'étude d'un processus. Rev. Stat. App. 1989 XXXVII(4) 41-60.
- [9] J.D. Rodriguez and α Sinovich, Physica D. 43 (1990) 77.